HOME

TheInfoList



OR:

Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher
concentration In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: '' mass concentration'', ''molar concentration'', ''number concentration'', an ...
to a region of lower concentration. Diffusion is driven by a gradient in
Gibbs free energy In thermodynamics, the Gibbs free energy (or Gibbs energy; symbol G) is a thermodynamic potential that can be used to calculate the maximum amount of work that may be performed by a thermodynamically closed system at constant temperature and pr ...
or
chemical potential In thermodynamics, the chemical potential of a species is the energy that can be absorbed or released due to a change of the particle number of the given species, e.g. in a chemical reaction or phase transition. The chemical potential of a species ...
. It is possible to diffuse "uphill" from a region of lower concentration to a region of higher concentration, like in
spinodal decomposition Spinodal decomposition is a mechanism by which a single thermodynamic phase spontaneously separates into two phases (without nucleation). Decomposition occurs when there is no thermodynamic barrier to phase separation. As a result, phase separatio ...
. The concept of diffusion is widely used in many fields, including
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
(
particle diffusion In mathematics and physics, the heat equation is a certain partial differential equation. Solutions of the heat equation are sometimes known as caloric functions. The theory of the heat equation was first developed by Joseph Fourier in 1822 fo ...
),
chemistry Chemistry is the science, scientific study of the properties and behavior of matter. It is a natural science that covers the Chemical element, elements that make up matter to the chemical compound, compounds made of atoms, molecules and ions ...
,
biology Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditary i ...
,
sociology Sociology is a social science that focuses on society, human social behavior, patterns of Interpersonal ties, social relationships, social interaction, and aspects of culture associated with everyday life. It uses various methods of Empirical ...
,
economics Economics () is the social science that studies the Production (economics), production, distribution (economics), distribution, and Consumption (economics), consumption of goods and services. Economics focuses on the behaviour and intera ...
, and
finance Finance is the study and discipline of money, currency and capital assets. It is related to, but not synonymous with economics, the study of production, distribution, and consumption of money, assets, goods and services (the discipline of fina ...
(diffusion of people, ideas, and price values). The central idea of diffusion, however, is common to all of these: a substance or collection undergoing diffusion spreads out from a point or location at which there is a higher concentration of that substance or collection. A
gradient In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p is the "direction and rate of fastest increase". If the gradi ...
is the change in the value of a quantity, for example, concentration,
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and e ...
, or
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied o ...
with the change in another variable, usually
distance Distance is a numerical or occasionally qualitative measurement of how far apart objects or points are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two counties over"). ...
. A change in concentration over a distance is called a
concentration gradient Molecular diffusion, often simply called diffusion, is the thermal motion of all (liquid or gas) particles at temperatures above absolute zero. The rate of this movement is a function of temperature, viscosity of the fluid and the size (mass) of ...
, a change in pressure over a distance is called a
pressure gradient In atmospheric science, the pressure gradient (typically of Earth's atmosphere, air but more generally of any fluid) is a physical quantity that describes in which direction and at what rate the pressure increases the most rapidly around a particu ...
, and a change in temperature over a distance is called a
temperature gradient A temperature gradient is a physical quantity that describes in which direction and at what rate the temperature changes the most rapidly around a particular location. The temperature gradient is a dimensional quantity expressed in units of degree ...
. The word ''diffusion'' derives from the
Latin Latin (, or , ) is a classical language belonging to the Italic branch of the Indo-European languages. Latin was originally a dialect spoken in the lower Tiber area (then known as Latium) around present-day Rome, but through the power of the ...
word, ''diffundere'', which means "to spread out." A distinguishing feature of diffusion is that it depends on particle
random walk In mathematics, a random walk is a random process that describes a path that consists of a succession of random steps on some mathematical space. An elementary example of a random walk is the random walk on the integer number line \mathbb Z ...
, and results in mixing or mass transport without requiring directed bulk motion. Bulk motion, or bulk flow, is the characteristic of
advection In the field of physics, engineering, and earth sciences, advection is the transport of a substance or quantity by bulk motion of a fluid. The properties of that substance are carried with it. Generally the majority of the advected substance is al ...
. The term
convection Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoyancy). When the cause of the convec ...
is used to describe the combination of both
transport phenomena In engineering, physics, and chemistry, the study of transport phenomena concerns the exchange of mass, energy, charge, momentum and angular momentum between observed and studied systems. While it draws from fields as diverse as continuum mechan ...
. If a diffusion process can be described by Fick's laws, it's called a normal diffusion (or Fickian diffusion); Otherwise, it's called an
anomalous diffusion Anomalous diffusion is a diffusion process with a non-linear relationship between the mean squared displacement (MSD), \langle r^(\tau )\rangle , and time. This behavior is in stark contrast to Brownian motion, the typical diffusion process descri ...
(or non-Fickian diffusion). When talking about the extent of diffusion, two length scales are used in two different scenarios: #
Brownian motion Brownian motion, or pedesis (from grc, πήδησις "leaping"), is the random motion of particles suspended in a medium (a liquid or a gas). This pattern of motion typically consists of random fluctuations in a particle's position insi ...
of an impulsive point source (for example, one single spray of perfume)—the square root of the
mean squared displacement In statistical mechanics, the mean squared displacement (MSD, also mean square displacement, average squared displacement, or mean square fluctuation) is a measure of the deviation of the position of a particle with respect to a reference positio ...
from this point. In Fickian diffusion, this is \sqrt, where n is the
dimension In physics and mathematics, the dimension of a Space (mathematics), mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any Point (geometry), point within it. Thus, a Line (geometry), lin ...
of this Brownian motion; # Constant concentration source in one dimension—the diffusion length. In Fickian diffusion, this is 2\sqrt.


Diffusion vs. bulk flow

"Bulk flow" is the movement/flow of an entire body due to a pressure gradient (for example, water coming out of a tap). "Diffusion" is the gradual movement/dispersion of concentration within a body, due to a concentration gradient, with no net movement of matter. An example of a process where both bulk motion and diffusion occur is human breathing. First, there is a "bulk flow" process. The
lungs The lungs are the primary organs of the respiratory system in humans and most other animals, including some snails and a small number of fish. In mammals and most other vertebrates, two lungs are located near the backbone on either side of th ...
are located in the
thoracic cavity The thoracic cavity (or chest cavity) is the chamber of the body of vertebrates that is protected by the thoracic wall (rib cage and associated skin, muscle, and fascia). The central compartment of the thoracic cavity is the mediastinum. There ...
, which expands as the first step in external respiration. This expansion leads to an increase in volume of the
alveoli Alveolus (; pl. alveoli, adj. alveolar) is a general anatomical term for a concave cavity or pit. Uses in anatomy and zoology * Pulmonary alveolus, an air sac in the lungs ** Alveolar cell or pneumocyte ** Alveolar duct ** Alveolar macrophage * ...
in the lungs, which causes a decrease in pressure in the alveoli. This creates a pressure gradient between the
air The atmosphere of Earth is the layer of gases, known collectively as air, retained by Earth's gravity that surrounds the planet and forms its planetary atmosphere. The atmosphere of Earth protects life on Earth by creating pressure allowing f ...
outside the body at relatively high pressure and the alveoli at relatively low pressure. The air moves down the pressure gradient through the airways of the lungs and into the alveoli until the pressure of the air and that in the alveoli are equal, that is, the movement of air by bulk flow stops once there is no longer a pressure gradient. Second, there is a "diffusion" process. The air arriving in the alveoli has a higher concentration of oxygen than the "stale" air in the alveoli. The increase in oxygen concentration creates a concentration gradient for oxygen between the air in the alveoli and the blood in the
capillaries A capillary is a small blood vessel from 5 to 10 micrometres (μm) in diameter. Capillaries are composed of only the tunica intima, consisting of a thin wall of simple squamous endothelial cells. They are the smallest blood vessels in the body: ...
that surround the alveoli. Oxygen then moves by diffusion, down the concentration gradient, into the blood. The other consequence of the air arriving in alveoli is that the concentration of
carbon dioxide Carbon dioxide (chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transpar ...
in the alveoli decreases. This creates a concentration gradient for carbon dioxide to diffuse from the blood into the alveoli, as fresh air has a very low concentration of carbon dioxide compared to the
blood Blood is a body fluid in the circulatory system of humans and other vertebrates that delivers necessary substances such as nutrients and oxygen to the cells, and transports metabolic waste products away from those same cells. Blood in the c ...
in the body. Third, there is another "bulk flow" process. The pumping action of the
heart The heart is a muscular organ in most animals. This organ pumps blood through the blood vessels of the circulatory system. The pumped blood carries oxygen and nutrients to the body, while carrying metabolic waste such as carbon dioxide t ...
then transports the blood around the body. As the left ventricle of the heart contracts, the volume decreases, which increases the pressure in the ventricle. This creates a pressure gradient between the heart and the capillaries, and blood moves through
blood vessel The blood vessels are the components of the circulatory system that transport blood throughout the human body. These vessels transport blood cells, nutrients, and oxygen to the tissues of the body. They also take waste and carbon dioxide away ...
s by bulk flow down the pressure gradient.


Diffusion in the context of different disciplines

The concept of diffusion is widely used in:
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
(
particle diffusion In mathematics and physics, the heat equation is a certain partial differential equation. Solutions of the heat equation are sometimes known as caloric functions. The theory of the heat equation was first developed by Joseph Fourier in 1822 fo ...
),
chemistry Chemistry is the science, scientific study of the properties and behavior of matter. It is a natural science that covers the Chemical element, elements that make up matter to the chemical compound, compounds made of atoms, molecules and ions ...
,
biology Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditary i ...
,
sociology Sociology is a social science that focuses on society, human social behavior, patterns of Interpersonal ties, social relationships, social interaction, and aspects of culture associated with everyday life. It uses various methods of Empirical ...
,
economics Economics () is the social science that studies the Production (economics), production, distribution (economics), distribution, and Consumption (economics), consumption of goods and services. Economics focuses on the behaviour and intera ...
, and
finance Finance is the study and discipline of money, currency and capital assets. It is related to, but not synonymous with economics, the study of production, distribution, and consumption of money, assets, goods and services (the discipline of fina ...
(diffusion of people, ideas and of price values). However, in each case the substance or collection undergoing diffusion is "spreading out" from a point or location at which there is a higher concentration of that substance or collection. There are two ways to introduce the notion of ''diffusion'': either a phenomenological approach starting with
Fick's laws of diffusion Fick's laws of diffusion describe diffusion and were derived by Adolf Fick in 1855. They can be used to solve for the diffusion coefficient, . Fick's first law can be used to derive his second law which in turn is identical to the diffusion equ ...
and their mathematical consequences, or a physical and atomistic one, by considering the ''
random walk In mathematics, a random walk is a random process that describes a path that consists of a succession of random steps on some mathematical space. An elementary example of a random walk is the random walk on the integer number line \mathbb Z ...
of the diffusing particles''. In the phenomenological approach, ''diffusion is the movement of a substance from a region of high concentration to a region of low concentration without bulk motion''. According to Fick's laws, the diffusion
flux Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications to physics. For transport ph ...
is proportional to the negative
gradient In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p is the "direction and rate of fastest increase". If the gradi ...
of concentrations. It goes from regions of higher concentration to regions of lower concentration. Sometime later, various generalizations of Fick's laws were developed in the frame of
thermodynamics Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of the ...
and
non-equilibrium thermodynamics Non-equilibrium thermodynamics is a branch of thermodynamics that deals with physical systems that are not in thermodynamic equilibrium but can be described in terms of macroscopic quantities (non-equilibrium state variables) that represent an ext ...
. From the ''atomistic point of view'', diffusion is considered as a result of the random walk of the diffusing particles. In
molecular diffusion Molecular diffusion, often simply called diffusion, is the thermal motion of all (liquid or gas) particles at temperatures above absolute zero. The rate of this movement is a function of temperature, viscosity of the fluid and the size (mass) of ...
, the moving molecules are self-propelled by thermal energy. Random walk of small particles in suspension in a fluid was discovered in 1827 by Robert Brown, who found that minute particle suspended in a liquid medium and just large enough to be visible under an optical microscope exhibit a rapid and continually irregular motion of particles known as Brownian movement. The theory of the
Brownian motion Brownian motion, or pedesis (from grc, πήδησις "leaping"), is the random motion of particles suspended in a medium (a liquid or a gas). This pattern of motion typically consists of random fluctuations in a particle's position insi ...
and the atomistic backgrounds of diffusion were developed by
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theory ...
. The concept of diffusion is typically applied to any subject matter involving random walks in ensembles of individuals. In
chemistry Chemistry is the science, scientific study of the properties and behavior of matter. It is a natural science that covers the Chemical element, elements that make up matter to the chemical compound, compounds made of atoms, molecules and ions ...
and materials science, diffusion refers to the movement of fluid molecules in porous solids.
Molecular diffusion Molecular diffusion, often simply called diffusion, is the thermal motion of all (liquid or gas) particles at temperatures above absolute zero. The rate of this movement is a function of temperature, viscosity of the fluid and the size (mass) of ...
occurs when the collision with another molecule is more likely than the collision with the pore walls. Under such conditions, the diffusivity is similar to that in a non-confined space and is proportional to the mean free path.
Knudsen diffusion In physics, Knudsen diffusion, named after Martin Knudsen, is a means of diffusion that occurs when the scale length of a system is comparable to or smaller than the mean free path of the particles involved. An example of this is in a long pore wi ...
, which occurs when the pore diameter is comparable to or smaller than the mean free path of the molecule diffusing through the pore. Under this condition, the collision with the pore walls becomes gradually more likely and the diffusivity is lower. Finally there is configurational diffusion, which happens if the molecules have comparable size to that of the pore. Under this condition, the diffusivity is much lower compared to molecular diffusion and small differences in the kinetic diameter of the molecule cause large differences in
diffusivity Diffusivity is a rate of diffusion, a measure of the rate at which particles or heat or fluids can spread. It is measured differently for different mediums. Diffusivity may refer to: *Thermal diffusivity, diffusivity of heat *Diffusivity of mass: ...
.
Biologist A biologist is a scientist who conducts research in biology. Biologists are interested in studying life on Earth, whether it is an individual Cell (biology), cell, a multicellular organism, or a Community (ecology), community of Biological inter ...
s often use the terms "net movement" or "net diffusion" to describe the movement of ions or molecules by diffusion. For example, oxygen can diffuse through cell membranes so long as there is a higher concentration of oxygen outside the cell. However, because the movement of molecules is random, occasionally oxygen molecules move out of the cell (against the concentration gradient). Because there are more oxygen molecules outside the cell, the
probability Probability is the branch of mathematics concerning numerical descriptions of how likely an Event (probability theory), event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and ...
that oxygen molecules will enter the cell is higher than the probability that oxygen molecules will leave the cell. Therefore, the "net" movement of oxygen molecules (the difference between the number of molecules either entering or leaving the cell) is into the cell. In other words, there is a ''net movement'' of oxygen molecules down the concentration gradient.


History of diffusion in physics

In the scope of time, diffusion in solids was used long before the theory of diffusion was created. For example,
Pliny the Elder Gaius Plinius Secundus (AD 23/2479), called Pliny the Elder (), was a Roman author, naturalist and natural philosopher, and naval and army commander of the early Roman Empire, and a friend of the emperor Vespasian. He wrote the encyclopedic '' ...
had previously described the
cementation process The cementation process is an obsolete technology for making steel by carburization of iron. Unlike modern steelmaking, it increased the amount of carbon in the iron. It was apparently developed before the 17th century. Derwentcote Steel F ...
, which produces steel from the element
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in f ...
(Fe) through carbon diffusion. Another example is well known for many centuries, the diffusion of colors of
stained glass Stained glass is coloured glass as a material or works created from it. Throughout its thousand-year history, the term has been applied almost exclusively to the windows of churches and other significant religious buildings. Although tradition ...
or
earthenware Earthenware is glazed or unglazed nonvitreous pottery that has normally been fired below . Basic earthenware, often called terracotta, absorbs liquids such as water. However, earthenware can be made impervious to liquids by coating it with a ce ...
and
Chinese ceramics Chinese ceramics show a continuous development since pre-dynastic times and are one of the most significant forms of Chinese art and ceramics globally. The first pottery was made during the Palaeolithic era. Chinese ceramics range from construc ...
. In modern science, the first systematic experimental study of diffusion was performed by Thomas Graham. He studied diffusion in gases, and the main phenomenon was described by him in 1831–1833:
"...gases of different nature, when brought into contact, do not arrange themselves according to their density, the heaviest undermost, and the lighter uppermost, but they spontaneously diffuse, mutually and equally, through each other, and so remain in the intimate state of mixture for any length of time."
The measurements of Graham contributed to
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and scientist responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and ligh ...
deriving, in 1867, the coefficient of diffusion for CO2 in the air. The error rate is less than 5%. In 1855,
Adolf Fick Adolf Eugen Fick (3 September 1829 – 21 August 1901) was a German-born physician and physiologist. Early life and education Fick began his work in the formal study of mathematics and physics before realising an aptitude for medicine. He th ...
, the 26-year-old anatomy demonstrator from Zürich, proposed his law of diffusion. He used Graham's research, stating his goal as "the development of a fundamental law, for the operation of diffusion in a single element of space". He asserted a deep analogy between diffusion and conduction of heat or electricity, creating a formalism similar to Fourier's law for heat conduction (1822) and
Ohm's law Ohm's law states that the current through a conductor between two points is directly proportional to the voltage across the two points. Introducing the constant of proportionality, the resistance, one arrives at the usual mathematical equat ...
for electric current (1827).
Robert Boyle Robert Boyle (; 25 January 1627 – 31 December 1691) was an Anglo-Irish natural philosopher, chemist, physicist, alchemist and inventor. Boyle is largely regarded today as the first modern chemist, and therefore one of the founders of ...
demonstrated diffusion in solids in the 17th century by penetration of zinc into a copper coin. Nevertheless, diffusion in solids was not systematically studied until the second part of the 19th century.
William Chandler Roberts-Austen Sir William Chandler Roberts-Austen (3 March 1843, Kennington – 22 November 1902, London) was an English metallurgist noted for his research on the physical properties of metals and their alloys. The austenite class of iron alloys is named aft ...
, the well-known British metallurgist and former assistant of Thomas Graham studied systematically solid state diffusion on the example of gold in lead in 1896. :
"... My long connection with Graham's researches made it almost a duty to attempt to extend his work on liquid diffusion to metals."
In 1858,
Rudolf Clausius Rudolf Julius Emanuel Clausius (; 2 January 1822 – 24 August 1888) was a German physicist and mathematician and is considered one of the central founding fathers of the science of thermodynamics. By his restatement of Sadi Carnot's principle ...
introduced the concept of the
mean free path In physics, mean free path is the average distance over which a moving particle (such as an atom, a molecule, or a photon) travels before substantially changing its direction or energy (or, in a specific context, other properties), typically as a ...
. In the same year,
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and scientist responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and ligh ...
developed the first atomistic theory of transport processes in gases. The modern atomistic theory of diffusion and
Brownian motion Brownian motion, or pedesis (from grc, πήδησις "leaping"), is the random motion of particles suspended in a medium (a liquid or a gas). This pattern of motion typically consists of random fluctuations in a particle's position insi ...
was developed by
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theory ...
,
Marian Smoluchowski Marian Smoluchowski (; 28 May 1872 – 5 September 1917) was a Polish physicist who worked in the Polish territories of the Austro-Hungarian Empire. He was a pioneer of statistical physics, and an avid mountaineer. Life Born into an upper-c ...
and
Jean-Baptiste Perrin Jean Baptiste Perrin (30 September 1870 – 17 April 1942) was a French physicist who, in his studies of the Brownian motion of minute particles suspended in liquids ( sedimentation equilibrium), verified Albert Einstein’s explanation of this ...
.
Ludwig Boltzmann Ludwig Eduard Boltzmann (; 20 February 1844 – 5 September 1906) was an Austrian physicist and philosopher. His greatest achievements were the development of statistical mechanics, and the statistical explanation of the second law of thermodyn ...
, in the development of the atomistic backgrounds of the macroscopic transport processes, introduced the
Boltzmann equation The Boltzmann equation or Boltzmann transport equation (BTE) describes the statistical behaviour of a thermodynamic system not in a state of equilibrium, devised by Ludwig Boltzmann in 1872.Encyclopaedia of Physics (2nd Edition), R. G. Lerne ...
, which has served mathematics and physics with a source of transport process ideas and concerns for more than 140 years.S. Chapman, T. G. Cowling (1970) ''The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases'', Cambridge University Press (3rd edition), . In 1920–1921,
George de Hevesy George Charles de Hevesy (born György Bischitz; hu, Hevesy György Károly; german: Georg Karl von Hevesy; 1 August 1885 – 5 July 1966) was a Hungarian radiochemist and Nobel Prize in Chemistry laureate, recognized in 1943 for his key role ...
measured
self-diffusion According to IUPAC definition, self-diffusion coefficient is the diffusion coefficient D_i^* of species i when the chemical potential gradient equals zero. It is linked to the diffusion coefficient D_i by the equation: D_i^*=D_i\frac. Here, a_i is ...
using
radioisotope A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferr ...
s. He studied self-diffusion of radioactive isotopes of lead in the liquid and solid lead.
Yakov Frenkel __NOTOC__ Yakov Il'ich Frenkel (russian: Яков Ильич Френкель; 10 February 1894 – 23 January 1952) was a Soviet physicist renowned for his works in the field of condensed matter physics. He is also known as Jacov Frenkel, frequ ...
(sometimes, Jakov/Jacob Frenkel) proposed, and elaborated in 1926, the idea of diffusion in crystals through local defects (vacancies and
interstitial An interstitial space or interstice is a space between structures or objects. In particular, interstitial may refer to: Biology * Interstitial cell tumor * Interstitial cell, any cell that lies between other cells * Interstitial collagenase, ...
atoms). He concluded, the diffusion process in condensed matter is an ensemble of elementary jumps and quasichemical interactions of particles and defects. He introduced several mechanisms of diffusion and found rate constants from experimental data. Sometime later,
Carl Wagner Carl Wilhelm Wagner (May 25, 1901 – December 10, 1977) was a German Physical chemist. He is best known for his pioneering work on Solid-state chemistry, where his work on oxidation rate theory, counter diffusion of ions and defect chemistry ...
and
Walter H. Schottky Walter Hans Schottky (23 July 1886 – 4 March 1976) was a German physicist who played a major early role in developing the theory of electron and ion emission phenomena, invented the screen-grid vacuum tube in 1915 while working at Siemens ...
developed Frenkel's ideas about mechanisms of diffusion further. Presently, it is universally recognized that atomic defects are necessary to mediate diffusion in crystals. Henry Eyring, with co-authors, applied his theory of absolute reaction rates to Frenkel's quasichemical model of diffusion. The analogy between
reaction kinetics Chemical kinetics, also known as reaction kinetics, is the branch of physical chemistry that is concerned with understanding the rates of chemical reactions. It is to be contrasted with chemical thermodynamics, which deals with the direction in wh ...
and diffusion leads to various nonlinear versions of Fick's law.


Basic models of diffusion


Diffusion flux

Each model of diffusion expresses the diffusion flux with the use of concentrations, densities and their derivatives. Flux is a vector \mathbf representing the quantity and direction of transfer. Given a small
area Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape A shape or figure is a graphics, graphical representation of an obje ...
\Delta S with normal \boldsymbol, the transfer of a
physical quantity A physical quantity is a physical property of a material or system that can be quantified by measurement. A physical quantity can be expressed as a ''value'', which is the algebraic multiplication of a ' Numerical value ' and a ' Unit '. For examp ...
N through the area \Delta S per time \Delta t is :\Delta N = (\mathbf,\boldsymbol) \,\Delta S \,\Delta t +o(\Delta S \,\Delta t)\, , where (\mathbf,\boldsymbol) is the
inner product In mathematics, an inner product space (or, rarely, a Hausdorff space, Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation (mathematics), operation called an inner product. The inner product of two ve ...
and o(\cdots) is the
little-o notation Big ''O'' notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by Paul Bachmann, Edmund Land ...
. If we use the notation of
vector area In 3-dimensional geometry and vector calculus, an area vector is a vector combining an area quantity with a direction, thus representing an ''oriented area'' in three dimensions. Every bounded surface in three dimensions can be associated with a ...
\Delta \mathbf=\boldsymbol \, \Delta S then :\Delta N = (\mathbf, \Delta \mathbf) \, \Delta t +o(\Delta \mathbf \,\Delta t)\, . The
dimension In physics and mathematics, the dimension of a Space (mathematics), mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any Point (geometry), point within it. Thus, a Line (geometry), lin ...
of the diffusion flux is luxnbsp;=  uantity( ime
rea REA or Rea may refer to: Places * Rea, Lombardy, in Italy * Rea, Missouri, United States * River Rea, a river in Birmingham, England * River Rea, Shropshire, a river in Shropshire, England * Rea, Hungarian name of Reea village in Totești Commun ...
. The diffusing physical quantity N may be the number of particles, mass, energy, electric charge, or any other scalar
extensive quantity Physical properties of materials and systems can often be categorized as being either intensive or extensive, according to how the property changes when the size (or extent) of the system changes. According to IUPAC, an intensive quantity is one ...
. For its density, n, the diffusion equation has the form :\frac= - \nabla \cdot \mathbf +W \, , where W is intensity of any local source of this quantity (for example, the rate of a chemical reaction). For the diffusion equation, the no-flux boundary conditions can be formulated as (\mathbf(x),\boldsymbol(x))=0 on the boundary, where \boldsymbol is the normal to the boundary at point x.


Fick's law and equations

Fick's first law: the diffusion flux is proportional to the negative of the concentration gradient: :\mathbf=-D \,\nabla n \ , \;\; J_i=-D \frac \ . The corresponding diffusion equation (Fick's second law) is :\frac=\nabla\cdot( D \,\nabla n(x,t))=D \, \Delta n(x,t)\ , where \Delta is the
Laplace operator In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \nabla is the ...
, :\Delta n(x,t) = \sum_i \frac \ .


Onsager's equations for multicomponent diffusion and thermodiffusion

Fick's law describes diffusion of an admixture in a medium. The concentration of this admixture should be small and the gradient of this concentration should be also small. The driving force of diffusion in Fick's law is the antigradient of concentration, -\nabla n. In 1931,
Lars Onsager Lars Onsager (November 27, 1903 – October 5, 1976) was a Norwegian-born American physical chemist and theoretical physicist. He held the Gibbs Professorship of Theoretical Chemistry at Yale University. He was awarded the Nobel Prize in Che ...
included the multicomponent transport processes in the general context of linear non-equilibrium thermodynamics. For multi-component transport, :\mathbf_i=\sum_j L_ X_j \, , where \mathbf_i is the flux of the ''i''th physical quantity (component) and X_j is the ''j''th thermodynamic force. The thermodynamic forces for the transport processes were introduced by Onsager as the space gradients of the derivatives of the
entropy Entropy is a scientific concept, as well as a measurable physical property, that is most commonly associated with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynam ...
density s (he used the term "force" in quotation marks or "driving force"): :X_i= \nabla \frac \, , where n_i are the "thermodynamic coordinates". For the heat and mass transfer one can take n_0=u (the density of internal energy) and n_i is the concentration of the ith component. The corresponding driving forces are the space vectors : X_0= \nabla \frac\ , \;\;\; X_i= - \nabla \frac \; (i >0) , because \mathrms = \frac \,\mathrmu-\sum_ \frac \, n_i where ''T'' is the absolute temperature and \mu_i is the chemical potential of the ith component. It should be stressed that the separate diffusion equations describe the mixing or mass transport without bulk motion. Therefore, the terms with variation of the total pressure are neglected. It is possible for diffusion of small admixtures and for small gradients. For the linear Onsager equations, we must take the thermodynamic forces in the linear approximation near equilibrium: :X_i= \sum_ \left.\frac\_ \nabla n_k \ , where the derivatives of s are calculated at equilibrium n^*. The matrix of the ''kinetic coefficients'' L_ should be symmetric (
Onsager reciprocal relations In thermodynamics, the Onsager reciprocal relations express the equality of certain ratios between flows and forces in thermodynamic systems out of equilibrium, but where a notion of local equilibrium exists. "Reciprocal relations" occur betw ...
) and
positive definite In mathematics, positive definiteness is a property of any object to which a bilinear form or a sesquilinear form may be naturally associated, which is positive-definite. See, in particular: * Positive-definite bilinear form * Positive-definite f ...
( for the entropy growth). The transport equations are :\frac= - \operatorname \mathbf_i =- \sum_ L_\operatorname X_j = \sum_ \left _\right\, \Delta n_k\ . Here, all the indexes are related to the internal energy (0) and various components. The expression in the square brackets is the matrix D_ of the diffusion (''i'',''k'' > 0), thermodiffusion (''i'' > 0, ''k'' = 0 or ''k'' > 0, ''i'' = 0) and
thermal conductivity The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by k, \lambda, or \kappa. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal ...
() coefficients. Under isothermal conditions ''T'' = constant. The relevant thermodynamic potential is the free energy (or the
free entropy A thermodynamic free entropy is an entropic thermodynamic potential analogous to the free energy. Also known as a Massieu, Planck, or Massieu–Planck potentials (or functions), or (rarely) free information. In statistical mechanics, free entrop ...
). The thermodynamic driving forces for the isothermal diffusion are antigradients of chemical potentials, -(1/T)\,\nabla\mu_j, and the matrix of diffusion coefficients is :D_=\frac\sum_ L_ \left.\frac \_ (''i,k'' > 0). There is intrinsic arbitrariness in the definition of the thermodynamic forces and kinetic coefficients because they are not measurable separately and only their combinations \sum_j L_X_j can be measured. For example, in the original work of Onsager the thermodynamic forces include additional multiplier ''T'', whereas in the
Course of Theoretical Physics The ''Course of Theoretical Physics'' is a ten-volume series of books covering theoretical physics that was initiated by Lev Landau and written in collaboration with his student Evgeny Lifshitz starting in the late 1930s. It is said that Landau ...
this multiplier is omitted but the sign of the thermodynamic forces is opposite. All these changes are supplemented by the corresponding changes in the coefficients and do not affect the measurable quantities.


Nondiagonal diffusion must be nonlinear

The formalism of linear irreversible thermodynamics (Onsager) generates the systems of linear diffusion equations in the form :\frac = \sum_j D_ \, \Delta c_j. If the matrix of diffusion coefficients is diagonal, then this system of equations is just a collection of decoupled Fick's equations for various components. Assume that diffusion is non-diagonal, for example, D_ \neq 0, and consider the state with c_2 = \cdots = c_n = 0. At this state, \partial c_2 / \partial t = D_ \, \Delta c_1. If D_ \, \Delta c_1(x) < 0 at some points, then c_2(x) becomes negative at these points in a short time. Therefore, linear non-diagonal diffusion does not preserve positivity of concentrations. Non-diagonal equations of multicomponent diffusion must be non-linear.


Einstein's mobility and Teorell formula

The
Einstein relation (kinetic theory) In physics (specifically, the kinetic theory of gases), the Einstein relation is a previously unexpected connection revealed independently by William Sutherland in 1904, Albert Einstein in 1905, and by Marian Smoluchowski in 1906 in their works on ...
connects the diffusion coefficient and the mobility (the ratio of the particle's terminal
drift velocity In physics, a drift velocity is the average velocity attained by charged particles, such as electrons, in a material due to an electric field. In general, an electron in a conductor will propagate randomly at the Fermi velocity, resulting in an a ...
to an applied
force In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a p ...
) : D = \frac, where ''D'' is the
diffusion constant Fick's laws of diffusion describe diffusion and were derived by Adolf Fick in 1855. They can be used to solve for the diffusion coefficient, . Fick's first law can be used to derive his second law which in turn is identical to the diffusion equ ...
, ''μ'' is the "mobility", ''k''B is
Boltzmann's constant The Boltzmann constant ( or ) is the proportionality factor that relates the average relative kinetic energy of particles in a gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin and the gas constant, ...
, ''T'' is the
absolute temperature Thermodynamic temperature is a quantity defined in thermodynamics as distinct from kinetic theory or statistical mechanics. Historically, thermodynamic temperature was defined by Kelvin in terms of a macroscopic relation between thermodynamic wor ...
, and ''q'' is the
elementary charge The elementary charge, usually denoted by is the electric charge carried by a single proton or, equivalently, the magnitude of the negative electric charge carried by a single electron, which has charge −1 . This elementary charge is a fundame ...
, that is, the charge of one electron. Below, to combine in the same formula the chemical potential ''μ'' and the mobility, we use for mobility the notation \mathfrak. The mobility-based approach was further applied by T. Teorell. In 1935, he studied the diffusion of ions through a membrane. He formulated the essence of his approach in the formula: :the flux is equal to mobility × concentration × force per gram-ion. This is the so-called ''Teorell formula''. The term "gram-ion" ("gram-particle") is used for a quantity of a substance that contains
Avogadro's number The Avogadro constant, commonly denoted or , is the proportionality factor that relates the number of constituent particles (usually molecules, atoms or ions) in a sample with the amount of substance in that sample. It is an SI defining co ...
of ions (particles). The common modern term is
mole Mole (or Molé) may refer to: Animals * Mole (animal) or "true mole", mammals in the family Talpidae, found in Eurasia and North America * Golden moles, southern African mammals in the family Chrysochloridae, similar to but unrelated to Talpida ...
. The force under isothermal conditions consists of two parts: # Diffusion force caused by concentration gradient: -RT \frac \, \nabla n = -RT \, \nabla (\ln(n/n^\text)). # Electrostatic force caused by electric potential gradient: q \, \nabla \varphi. Here ''R'' is the gas constant, ''T'' is the absolute temperature, ''n'' is the concentration, the equilibrium concentration is marked by a superscript "eq", ''q'' is the charge and ''φ'' is the electric potential. The simple but crucial difference between the Teorell formula and the Onsager laws is the concentration factor in the Teorell expression for the flux. In the Einstein–Teorell approach, if for the finite force the concentration tends to zero then the flux also tends to zero, whereas the Onsager equations violate this simple and physically obvious rule. The general formulation of the Teorell formula for non-perfect systems under isothermal conditions is :\mathbf = \mathfrak \exp\left(\frac\right)(-\nabla \mu + (\text)), where ''μ'' is the
chemical potential In thermodynamics, the chemical potential of a species is the energy that can be absorbed or released due to a change of the particle number of the given species, e.g. in a chemical reaction or phase transition. The chemical potential of a species ...
, ''μ''0 is the standard value of the chemical potential. The expression a = \exp\left(\frac\right) is the so-called activity. It measures the "effective concentration" of a species in a non-ideal mixture. In this notation, the Teorell formula for the flux has a very simple form :\mathbf = \mathfrak a (-\nabla \mu + (\text)). The standard derivation of the activity includes a normalization factor and for small concentrations a = n/n^\ominus + o(n/n^\ominus), where n^\ominus is the standard concentration. Therefore, this formula for the flux describes the flux of the normalized dimensionless quantity n/n^\ominus: :\frac = \nabla \cdot mathfrak a (\nabla \mu - (\text))


Fluctuation-dissipation theorem

Fluctuation-dissipation theorem The fluctuation–dissipation theorem (FDT) or fluctuation–dissipation relation (FDR) is a powerful tool in statistical physics for predicting the behavior of systems that obey detailed balance. Given that a system obeys detailed balance, the th ...
based on the Langevin equation is developed to extend the Einstein model to the ballistic time scale. According to Langevin, the equation is based on Newton's second law of motion as :m \frac = -\frac\frac + F(t) where * ''x'' is the position. * ''μ'' is the mobility of the particle in the fluid or gas, which can be calculated using the
Einstein relation (kinetic theory) In physics (specifically, the kinetic theory of gases), the Einstein relation is a previously unexpected connection revealed independently by William Sutherland in 1904, Albert Einstein in 1905, and by Marian Smoluchowski in 1906 in their works on ...
. * ''m'' is the mass of the particle. * ''F'' is the random force applied to the particle. * ''t'' is time. Solving this equation, one obtained the time-dependent diffusion constant in the long-time limit and when the particle is significantly denser than the surrounding fluid, : D(t) = \mu \, k_ T(1-e^) where * ''k''B is
Boltzmann's constant The Boltzmann constant ( or ) is the proportionality factor that relates the average relative kinetic energy of particles in a gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin and the gas constant, ...
; * ''T'' is the
absolute temperature Thermodynamic temperature is a quantity defined in thermodynamics as distinct from kinetic theory or statistical mechanics. Historically, thermodynamic temperature was defined by Kelvin in terms of a macroscopic relation between thermodynamic wor ...
. * ''μ'' is the mobility of the particle in the fluid or gas, which can be calculated using the
Einstein relation (kinetic theory) In physics (specifically, the kinetic theory of gases), the Einstein relation is a previously unexpected connection revealed independently by William Sutherland in 1904, Albert Einstein in 1905, and by Marian Smoluchowski in 1906 in their works on ...
. * ''m'' is the mass of the particle. * ''t'' is time.


Teorell formula for multicomponent diffusion

The Teorell formula with combination of Onsager's definition of the diffusion force gives :\mathbf_i = \mathfrak a_i \sum_j L_ X_j, where \mathfrak is the mobility of the ''i''th component, a_i is its activity, L_ is the matrix of the coefficients, X_j is the thermodynamic diffusion force, X_j= -\nabla \frac. For the isothermal perfect systems, X_j = - R \frac. Therefore, the Einstein–Teorell approach gives the following multicomponent generalization of the Fick's law for multicomponent diffusion: :\frac = \sum_j \nabla \cdot \left(D_\frac \nabla n_j\right), where D_ is the matrix of coefficients. The Chapman–Enskog formulas for diffusion in gases include exactly the same terms. Earlier, such terms were introduced in the
Maxwell–Stefan diffusion The Maxwell–Stefan diffusion (or Stefan–Maxwell diffusion) is a model for describing diffusion in multicomponent systems. The equations that describe these transport processes have been developed independently and in parallel by James Clerk Max ...
equation.


Jumps on the surface and in solids

Diffusion of reagents on the surface of a
catalyst Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
may play an important role in heterogeneous catalysis. The model of diffusion in the ideal monolayer is based on the jumps of the reagents on the nearest free places. This model was used for CO on Pt oxidation under low gas pressure. The system includes several reagents A_1,A_2,\ldots, A_m on the surface. Their surface concentrations are c_1,c_2,\ldots, c_m. The surface is a lattice of the adsorption places. Each reagent molecule fills a place on the surface. Some of the places are free. The concentration of the free places is z=c_0. The sum of all c_i (including free places) is constant, the density of adsorption places ''b''. The jump model gives for the diffusion flux of A_i (''i'' = 1, ..., ''n''): :\mathbf_i=-D_i \, \nabla c_i - c_i \nabla z, . The corresponding diffusion equation is: :\frac=- \operatorname\mathbf_i=D_i \, \Delta c_i - c_i \, \Delta z\, . Due to the conservation law, z=b-\sum_^n c_i \, , and we have the system of ''m'' diffusion equations. For one component we get Fick's law and linear equations because (b-c) \,\nabla c- c\,\nabla(b-c) = b\,\nabla c. For two and more components the equations are nonlinear. If all particles can exchange their positions with their closest neighbours then a simple generalization gives :\mathbf_i=-\sum_j D_ _j \,\nabla c_i - c_i \,\nabla c_j/math> :\frac=\sum_j D_ _j \, \Delta c_i - c_i \,\Delta c_j/math> where D_ = D_ \geq 0 is a symmetric matrix of coefficients that characterize the intensities of jumps. The free places (vacancies) should be considered as special "particles" with concentration c_0. Various versions of these jump models are also suitable for simple diffusion mechanisms in solids.


Diffusion in porous media

For diffusion in porous media the basic equations are (if Φ is constant): :\mathbf=- \phi D \,\nabla n^m :\frac = D \, \Delta n^m \, , where ''D'' is the diffusion coefficient, Φ is porosity, ''n'' is the concentration, ''m'' > 0 (usually ''m'' > 1, the case ''m'' = 1 corresponds to Fick's law). Care must be taken to properly account for the porosity (Φ) of the porous medium in both the flux terms and the accumulation terms. For example, as the porosity goes to zero, the molar flux in the porous medium goes to zero for a given concentration gradient. Upon applying the divergence of the flux, the porosity terms cancel out and the second equation above is formed. For diffusion of gases in porous media this equation is the formalization of
Darcy's law Darcy's law is an equation that describes the flow of a fluid through a porous medium. The law was formulated by Henry Darcy based on results of experiments on the flow of water through beds of sand, forming the basis of hydrogeology, a branch of e ...
: the
volumetric flux In fluid dynamics, the volumetric flux is the rate of volume flow across a unit area (m3·s−1·m−2). Volumetric flux has dimensions of volume/(time*area). The density of a particular property in a fluid's volume, multiplied with the volumetri ...
of a gas in the porous media is :q=-\frac\,\nabla p where ''k'' is the permeability of the medium, ''μ'' is the
viscosity The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the inte ...
and ''p'' is the pressure. The advective molar flux is given as ''J'' = ''nq'' and for p \sim n^\gamma Darcy's law gives the equation of diffusion in porous media with ''m'' = ''γ'' + 1. In porous media, the average linear velocity (ν), is related to the volumetric flux as: \upsilon= q/\phi Combining the advective molar flux with the diffusive flux gives the advection dispersion equation \frac = D \, \Delta n^m \ - \nu\cdot \nabla n^m, For underground water infiltration, the Boussinesq approximation gives the same equation with ''m'' = 2. For plasma with the high level of radiation, the Zeldovich–Raizer equation gives ''m'' > 4 for the heat transfer.


Diffusion in physics


Diffusion coefficient in kinetic theory of gases

The diffusion coefficient D is the coefficient in the Fick's first law J=- D \, \partial n/\partial x , where ''J'' is the diffusion flux (
amount of substance In chemistry, the amount of substance ''n'' in a given sample of matter is defined as the quantity or number of discrete atomic-scale particles in it divided by the Avogadro constant ''N''A. The particles or entities may be molecules, atoms, ions, ...
) per unit area per unit time, ''n'' (for ideal mixtures) is the concentration, ''x'' is the position ength Consider two gases with molecules of the same diameter ''d'' and mass ''m'' (
self-diffusion According to IUPAC definition, self-diffusion coefficient is the diffusion coefficient D_i^* of species i when the chemical potential gradient equals zero. It is linked to the diffusion coefficient D_i by the equation: D_i^*=D_i\frac. Here, a_i is ...
). In this case, the elementary mean free path theory of diffusion gives for the diffusion coefficient :D=\frac \ell v_T = \frac\sqrt \frac\, , where ''k''B is the
Boltzmann constant The Boltzmann constant ( or ) is the proportionality factor that relates the average relative kinetic energy of particles in a gas with the thermodynamic temperature of the gas. It occurs in the definitions of the kelvin and the gas constant, ...
, ''T'' is the
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied o ...
, ''P'' is the
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and e ...
, \ell is the
mean free path In physics, mean free path is the average distance over which a moving particle (such as an atom, a molecule, or a photon) travels before substantially changing its direction or energy (or, in a specific context, other properties), typically as a ...
, and ''vT'' is the mean thermal speed: :\ell = \frac\, , \;\;\; v_T=\sqrt\, . We can see that the diffusion coefficient in the mean free path approximation grows with ''T'' as ''T''3/2 and decreases with ''P'' as 1/''P''. If we use for ''P'' the
ideal gas law The ideal gas law, also called the general gas equation, is the equation of state of a hypothetical ideal gas. It is a good approximation of the behavior of many gases under many conditions, although it has several limitations. It was first stat ...
''P'' = ''RnT'' with the total concentration ''n'', then we can see that for given concentration ''n'' the diffusion coefficient grows with ''T'' as ''T''1/2 and for given temperature it decreases with the total concentration as 1/''n''. For two different gases, A and B, with molecular masses ''m''A, ''m''B and molecular diameters ''d''A, ''d''B, the mean free path estimate of the diffusion coefficient of A in B and B in A is: : D_=\frac\sqrt\sqrt\frac\, ,


The theory of diffusion in gases based on Boltzmann's equation

In Boltzmann's kinetics of the mixture of gases, each gas has its own distribution function, f_i(x,c,t), where ''t'' is the time moment, ''x'' is position and ''c'' is velocity of molecule of the ''i''th component of the mixture. Each component has its mean velocity C_i(x,t) = \frac \int_c c f(x,c,t) \, dc. If the velocities C_i(x,t) do not coincide then there exists ''diffusion''. In the Chapman–Enskog approximation, all the distribution functions are expressed through the densities of the conserved quantities: * individual concentrations of particles, n_i(x,t)=\int_c f_i(x,c,t)\, dc (particles per volume), * density of momentum \sum_i m_i n_i C_i(x,t) (''mi'' is the ''i''th particle mass), * density of kinetic energy \sum_i \left( n_i\frac + \int_c \frac f_i(x,c,t)\, dc \right). The kinetic temperature ''T'' and pressure ''P'' are defined in 3D space as :\frack_ T=\frac \int_c \frac f_i(x,c,t)\, dc; \quad P=k_nT, where n=\sum_i n_i is the total density. For two gases, the difference between velocities, C_1-C_2 is given by the expression: : C_1-C_2=-\fracD_\left\, where F_i is the force applied to the molecules of the ''i''th component and k_T is the thermodiffusion ratio. The coefficient ''D''12 is positive. This is the diffusion coefficient. Four terms in the formula for ''C''1−''C''2 describe four main effects in the diffusion of gases: # \nabla \,\left(\frac\right) describes the flux of the first component from the areas with the high ratio ''n''1/''n'' to the areas with lower values of this ratio (and, analogously the flux of the second component from high ''n''2/''n'' to low ''n''2/''n'' because ''n''2/''n'' = 1 – ''n''1/''n''); # \frac\nabla P describes the flux of the heavier molecules to the areas with higher pressure and the lighter molecules to the areas with lower pressure, this is barodiffusion; # \frac(F_1-F_2) describes diffusion caused by the difference of the forces applied to molecules of different types. For example, in the Earth's gravitational field, the heavier molecules should go down, or in electric field the charged molecules should move, until this effect is not equilibrated by the sum of other terms. This effect should not be confused with barodiffusion caused by the pressure gradient. # k_T \frac\nabla T describes
thermodiffusion Thermophoresis (also thermomigration, thermodiffusion, the Soret effect, or the Ludwig–Soret effect) is a phenomenon observed in mixtures of mobile particles where the different particle types exhibit different responses to the force of a temper ...
, the diffusion flux caused by the temperature gradient. All these effects are called ''diffusion'' because they describe the differences between velocities of different components in the mixture. Therefore, these effects cannot be described as a ''bulk'' transport and differ from advection or convection. In the first approximation, * D_=\frac\left frac \right for rigid spheres; * D_=\frac \left frac\right \left(\frac \right)^ for repulsing force \kappa_r^. The number A_1() is defined by quadratures (formulas (3.7), (3.9), Ch. 10 of the classical Chapman and Cowling book) We can see that the dependence on ''T'' for the rigid spheres is the same as for the simple mean free path theory but for the power repulsion laws the exponent is different. Dependence on a total concentration ''n'' for a given temperature has always the same character, 1/''n''. In applications to gas dynamics, the diffusion flux and the bulk flow should be joined in one system of transport equations. The bulk flow describes the mass transfer. Its velocity ''V'' is the mass average velocity. It is defined through the momentum density and the mass concentrations: :V=\frac \rho \, . where \rho_i =m_i n_i is the mass concentration of the ''i''th species, \rho=\sum_i \rho_i is the mass density. By definition, the diffusion velocity of the ''i''th component is v_i=C_i-V, \sum_i \rho_i v_i=0. The mass transfer of the ''i''th component is described by the
continuity equation A continuity equation or transport equation is an equation that describes the transport of some quantity. It is particularly simple and powerful when applied to a conserved quantity, but it can be generalized to apply to any extensive quantity. S ...
:\frac+\nabla(\rho_i V) + \nabla (\rho_i v_i) = W_i \, , where W_i is the net mass production rate in chemical reactions, \sum_i W_i= 0. In these equations, the term \nabla(\rho_i V) describes advection of the ''i''th component and the term \nabla (\rho_i v_i) represents diffusion of this component. In 1948,
Wendell H. Furry Wendell Hinkle Furry (February 18, 1907 – December 17, 1984) was a professor of physics at Harvard University who made contributions to theoretical and particle physics. The Furry theorem is named after him. Early life Furry was born in Pra ...
proposed to use the ''form'' of the diffusion rates found in kinetic theory as a framework for the new phenomenological approach to diffusion in gases. This approach was developed further by F.A. Williams and S.H. Lam. For the diffusion velocities in multicomponent gases (''N'' components) they used :v_i=-\left(\sum_^N D_ \mathbf_j + D_i^ \, \nabla (\ln T) \right)\, ; :\mathbf_j=\nabla X_j + (X_j-Y_j)\,\nabla (\ln P) + \mathbf_j\, ; :\mathbf_j=\frac \left( Y_j \sum_^N Y_k (f_k-f_j) \right)\, . Here, D_ is the diffusion coefficient matrix, D_i^ is the thermal diffusion coefficient, f_i is the body force per unit mass acting on the ''i''th species, X_i=P_i/P is the partial pressure fraction of the ''i''th species (and P_i is the partial pressure), Y_i=\rho_i/\rho is the mass fraction of the ''i''th species, and \sum_i X_i=\sum_i Y_i=1.


Diffusion of electrons in solids

When the density of electrons in solids is not in equilibrium, diffusion of electrons occurs. For example, when a bias is applied to two ends of a chunk of semiconductor, or a light shines on one end (see right figure), electrons diffuse from high density regions (center) to low density regions (two ends), forming a gradient of electron density. This process generates current, referred to as
diffusion current Diffusion current Density is a current in a semiconductor caused by the diffusion of charge carriers (electrons and/or electron holes). This is the current which is due to the transport of charges occurring because of non-uniform concentration of ch ...
. Diffusion current can also be described by Fick's first law :J=- D \, \partial n/\partial x\, , where ''J'' is the diffusion current density (
amount of substance In chemistry, the amount of substance ''n'' in a given sample of matter is defined as the quantity or number of discrete atomic-scale particles in it divided by the Avogadro constant ''N''A. The particles or entities may be molecules, atoms, ions, ...
) per unit area per unit time, ''n'' (for ideal mixtures) is the electron density, ''x'' is the position ength


Diffusion in geophysics

Analytical and numerical models that solve the diffusion equation for different initial and boundary conditions have been popular for studying a wide variety of changes to the Earth's surface. Diffusion has been used extensively in erosion studies of hillslope retreat, bluff erosion, fault scarp degradation, wave-cut terrace/shoreline retreat, alluvial channel incision, coastal shelf retreat, and delta progradation. Although the Earth's surface is not literally diffusing in many of these cases, the process of diffusion effectively mimics the holistic changes that occur over decades to millennia. Diffusion models may also be used to solve inverse boundary value problems in which some information about the depositional environment is known from paleoenvironmental reconstruction and the diffusion equation is used to figure out the sediment influx and time series of landform changes.


Dialysis

Dialysis works on the principles of the diffusion of solutes and
ultrafiltration Ultrafiltration (UF) is a variety of membrane filtration in which forces such as pressure or concentration gradients lead to a separation through a semipermeable membrane. Suspended solids and solutes of high molecular weight are retained in the s ...
of fluid across a
semi-permeable membrane Semipermeable membrane is a type of biological or synthetic, polymeric membrane that will allow certain molecules or ions to pass through it by osmosis. The rate of passage depends on the pressure, concentration, and temperature of the molecule ...
. Diffusion is a property of substances in water; substances in water tend to move from an area of high concentration to an area of low concentration.'' Mosby’s Dictionary of Medicine, Nursing, & Health Professions''. 7th ed. St. Louis, MO; Mosby: 2006 Blood flows by one side of a semi-permeable membrane, and a dialysate, or special dialysis fluid, flows by the opposite side. A semipermeable membrane is a thin layer of material that contains holes of various sizes, or pores. Smaller solutes and fluid pass through the membrane, but the membrane blocks the passage of larger substances (for example, red blood cells and large proteins). This replicates the filtering process that takes place in the kidneys when the blood enters the kidneys and the larger substances are separated from the smaller ones in the
glomerulus ''Glomerulus'' () is a common term used in anatomy to describe globular structures of entwined vessels, fibers, or neurons. ''Glomerulus'' is the diminutive of the Latin ''glomus'', meaning "ball of yarn". ''Glomerulus'' may refer to: * the filter ...
.


Random walk (random motion)

One common misconception is that individual atoms, ions or molecules move randomly, which they do not. In the animation on the right, the ion in the left panel appears to have "random" motion in the absence of other ions. As the right panel shows, however, this motion is not random but is the result of "collisions" with other ions. As such, the movement of a single atom, ion, or molecule within a mixture just appears random when viewed in isolation. The movement of a substance within a mixture by "random walk" is governed by the kinetic energy within the system that can be affected by changes in concentration, pressure or temperature. (This is a classical description. At smaller scales, quantum effects will be non-negligible, in general. Thus, the study of the movement of a single atom becomes more subtle since particles at such small scales are described by probability amplitudes rather than deterministic measures of position and velocity.)


Separation of diffusion from convection in gases

While Brownian motion of multi-molecular mesoscopic particles (like pollen grains studied by Brown) is observable under an optical microscope, molecular diffusion can only be probed in carefully controlled experimental conditions. Since Graham experiments, it is well known that avoiding of convection is necessary and this may be a non-trivial task. Under normal conditions, molecular diffusion dominates only at lengths in the nanometre-to-millimetre range. On larger length scales, transport in liquids and gases is normally due to another
transport phenomenon In engineering, physics, and chemistry, the study of transport phenomena concerns the exchange of mass, energy, charge, momentum and angular momentum between observed and studied systems. While it draws from fields as diverse as continuum me ...
,
convection Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoyancy). When the cause of the convec ...
. To separate diffusion in these cases, special efforts are needed. Therefore, some often cited examples of diffusion are ''wrong'': If cologne is sprayed in one place, it can soon be smelled in the entire room, but a simple calculation shows that this can't be due to diffusion. Convective motion persists in the room because of the temperature nhomogeneity If ink is dropped in water, one usually observes an inhomogeneous evolution of the spatial distribution, which clearly indicates convection (caused, in particular, by this dropping). In contrast,
heat conduction Conduction is the process by which heat is transferred from the hotter end to the colder end of an object. The ability of the object to conduct heat is known as its ''thermal conductivity'', and is denoted . Heat spontaneously flows along a te ...
through solid media is an everyday occurrence (for example, a metal spoon partly immersed in a hot liquid). This explains why the diffusion of heat was explained mathematically before the diffusion of mass.


Other types of diffusion

*
Anisotropic diffusion In image processing and computer vision, anisotropic diffusion, also called Perona–Malik diffusion, is a technique aiming at reducing image noise without removing significant parts of the image content, typically edges, lines or other details t ...
, also known as the Perona–Malik equation, enhances high gradients *
Atomic diffusion Atomic may refer to: * Of or relating to the atom, the smallest particle of a chemical element that retains its chemical properties * Atomic physics, the study of the atom * Atomic Age, also known as the "Atomic Era" * Atomic scale, distances comp ...
, in solids *
Bohm diffusion The diffusion of plasma across a magnetic field was conjectured to follow the Bohm diffusion scaling as indicated from the early plasma experiments of very lossy machines. This predicted that the rate of diffusion was linear with temperature and i ...
, spread of plasma across magnetic fields *
Eddy diffusion Eddy diffusion, eddy dispersion, or turbulent diffusion is a process by which substances are mixed in the atmosphere, the ocean or in any fluid system due to eddy motion. In other words, it is mixing that is caused by eddies that can vary in size f ...
, in coarse-grained description of turbulent flow *
Effusion In physics and chemistry, effusion is the process in which a gas escapes from a container through a hole of diameter considerably smaller than the mean free path of the molecules. Such a hole is often described as a ''pinhole'' and the escape ...
of a gas through small holes *
Electronic Electronic may refer to: *Electronics, the science of how to control electric energy in semiconductor * ''Electronics'' (magazine), a defunct American trade journal *Electronic storage, the storage of data using an electronic device *Electronic co ...
diffusion, resulting in an
electric current An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. The moving pa ...
called the
diffusion current Diffusion current Density is a current in a semiconductor caused by the diffusion of charge carriers (electrons and/or electron holes). This is the current which is due to the transport of charges occurring because of non-uniform concentration of ch ...
*
Facilitated diffusion Facilitated diffusion (also known as facilitated transport or passive-mediated transport) is the process of spontaneous passive transport (as opposed to active transport) of molecules or ions across a biological membrane via specific transmembra ...
, present in some organisms *
Gaseous diffusion Gaseous diffusion is a technology used to produce enriched uranium by forcing gaseous uranium hexafluoride (UF6) through semipermeable membranes. This produces a slight separation between the molecules containing uranium-235 (235U) and uranium-2 ...
, used for
isotope separation Isotope separation is the process of concentrating specific isotopes of a chemical element by removing other isotopes. The use of the nuclides produced is varied. The largest variety is used in research (e.g. in chemistry where atoms of "marker" n ...
*
Heat equation In mathematics and physics, the heat equation is a certain partial differential equation. Solutions of the heat equation are sometimes known as caloric functions. The theory of the heat equation was first developed by Joseph Fourier in 1822 for t ...
, diffusion of thermal energy *
Itō diffusion Itō may refer to: *Itō (surname), a Japanese surname *Itō, Shizuoka, Shizuoka Prefecture, Japan *Ito District, Wakayama Prefecture, Japan See also *Itô's lemma, used in stochastic calculus *Itoh–Tsujii inversion algorithm, in field theory ...
, mathematisation of Brownian motion, continuous stochastic process. *
Knudsen diffusion In physics, Knudsen diffusion, named after Martin Knudsen, is a means of diffusion that occurs when the scale length of a system is comparable to or smaller than the mean free path of the particles involved. An example of this is in a long pore wi ...
of gas in long pores with frequent wall collisions *
Lévy flight A Lévy flight is a random walk in which the step-lengths have a Lévy distribution, a probability distribution that is heavy-tailed. When defined as a walk in a space of dimension greater than one, the steps made are in isotropic random direct ...
*
Molecular diffusion Molecular diffusion, often simply called diffusion, is the thermal motion of all (liquid or gas) particles at temperatures above absolute zero. The rate of this movement is a function of temperature, viscosity of the fluid and the size (mass) of ...
, diffusion of molecules from more dense to less dense areas *
Momentum diffusion Momentum diffusion most commonly refers to the diffusion, or spread of momentum between particles (atoms or molecules) of matter, often in the fluid state. This transport of momentum can occur in any direction of the fluid flow. Momentum diffusion ...
ex. the diffusion of the
hydrodynamic In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids—liquids and gases. It has several subdisciplines, including ''aerodynamics'' (the study of air and other gases in motion) and ...
velocity field *
Photon diffusion Photon diffusion is a situation where photons travel through a material without being absorbed, but rather undergoing repeated scattering events which change the direction of their path. The path of any given photon is then effectively a random wal ...
*
Plasma diffusion Plasma diffusion across a magnetic field is an important topic in magnetic confinement of fusion plasma. It especially concerns how plasma transport is related to strength of an external magnetic field, B. Classical diffusion predicts 1/B2 scalin ...
*
Random walk In mathematics, a random walk is a random process that describes a path that consists of a succession of random steps on some mathematical space. An elementary example of a random walk is the random walk on the integer number line \mathbb Z ...
, model for diffusion *
Reverse diffusion Reverse diffusion refers to a situation where the transport of particles (atoms or molecules) in a medium occurs towards regions of higher concentration gradients, opposite to that observed during diffusion. This phenomenon occurs during phase se ...
, against the concentration gradient, in phase separation *
Rotational diffusion Rotational diffusion is the rotational movement which acts upon any object such as particles, molecules, atoms when present in a fluid, by random changes in their orientations. Whilst the directions and intensities of these changes are statistica ...
, random reorientation of molecules *
Surface diffusion Surface diffusion is a general process involving the motion of adatoms, molecules, and atomic clusters ( adparticles) at solid material surfaces.Oura, Lifshits, Saranin, Zotov, and Katayama 2003, p. 325 The process can generally be thought of in t ...
, diffusion of adparticles on a surface *
Taxis A taxis (; ) is the movement of an organism in response to a stimulus such as light or the presence of food. Taxes are innate behavioural responses. A taxis differs from a tropism (turning response, often growth towards or away from a stimulu ...
is an animal's directional movement activity in response to a stimulus ** Kinesis is an animal's non-directional movement activity in response to a stimulus *
Trans-cultural diffusion In cultural anthropology and cultural geography, cultural diffusion, as conceptualized by Leo Frobenius in his 1897/98 publication ''Der westafrikanische Kulturkreis'', is the spread of cultural items—such as ideas, styles, religions, technologi ...
, diffusion of cultural traits across geographical area *
Turbulent diffusion Turbulent diffusion is the transport of mass, heat, or momentum within a system due to random and chaotic time dependent motions. It occurs when turbulent fluid systems reach critical conditions in response to shear flow, which results from a combin ...
, transport of mass, heat, or momentum within a turbulent fluid


See also

* * * * * * * *


References

{{Authority control Transport phenomena Articles containing video clips Broad-concept articles