Diastereomeric Salt
   HOME

TheInfoList



OR:

In
stereochemistry Stereochemistry, a subdiscipline of chemistry, involves the study of the relative spatial arrangement of atoms that form the structure of molecules and their manipulation. The study of stereochemistry focuses on the relationships between stereois ...
, diastereomers (sometimes called diastereoisomers) are a type of stereoisomer. Diastereomers are defined as non-mirror image, non-identical stereoisomers. Hence, they occur when two or more stereoisomers of a compound have different configurations at one or more (but not all) of the equivalent (related) stereocenters and are not mirror images of each other. When two diastereoisomers differ from each other at only one stereocenter, they are epimers. Each stereocenter gives rise to two different configurations and thus typically increases the number of stereoisomers by a factor of two. Diastereomers differ from
enantiomer In chemistry, an enantiomer ( /ɪˈnænti.əmər, ɛ-, -oʊ-/ ''ih-NAN-tee-ə-mər''; from Ancient Greek ἐνάντιος ''(enántios)'' 'opposite', and μέρος ''(méros)'' 'part') – also called optical isomer, antipode, or optical ant ...
s in that the latter are pairs of stereoisomers that differ in all stereocenters and are therefore mirror images of one another. Enantiomers of a compound with more than one stereocenter are also diastereomers of the other stereoisomers of that compound that are not their mirror image (that is, excluding the opposing enantiomer). Diastereomers have different physical properties (unlike most aspects of enantiomers) and often different chemical reactivity. Diastereomers differ not only in physical properties but also in chemical reactivity — how a compound reacts with others. Glucose and galactose, for instance, are diastereomers. Even though they share the same molar weight, glucose is more stable than galactose. This difference in stability causes galactose to be absorbed slightly faster than glucose in human body. Diastereoselectivity is the preference for the formation of one or more than one diastereomer over the other in an
organic reaction Organic reactions are chemical reactions involving organic compounds. The basic organic chemistry reaction types are addition reactions, elimination reactions, substitution reactions, pericyclic reactions, rearrangement reactions, Mechanistic Organ ...
. In general, stereoselectivity is contributed to torsional and steric interactions in the stereocenter resulting from electrophiles approaching the stereocenter in reaction.


Syn / anti

When the single bond between the two centres is free to rotate, cis/trans descriptors become invalid. Two widely accepted prefixes used to distinguish diastereomers on sp³-hybridised bonds in an open-chain molecule are syn and anti. Masamune proposed the descriptors which work even if the groups are not attached to adjacent carbon atoms. It also works regardless of CIP priorities. Syn describes groups on the same face while anti describes groups on opposite faces. The concept applies only to the Zigzag projection. The descriptors only describe relative stereochemistry rather than absolute stereochemistry. All isomers are same.


Erythro / threo

Two older prefixes still commonly used to distinguish diastereomers are threo and erythro. In the case of saccharides, when drawn in the Fischer projection the erythro isomer has two identical substituents on the same side and the threo isomer has them on opposite sides. When drawn as a zig-zag chain, the erythro isomer has two identical substituents on different sides of the plane (anti). The names are derived from the diastereomeric four-carbon
aldose An aldose is a monosaccharide (a simple sugar) with a carbon backbone chain with a carbonyl group on the endmost carbon atom, making it an aldehyde, and hydroxyl groups connected to all the other carbon atoms. Aldoses can be distinguished from keto ...
s erythrose (a syrup) and threose (melting point 126 °C). These prefixes are not recommended for use outside of the realm of saccharides because their definitions can lead to conflicting interpretations. Another threo compound is
threonine Threonine (symbol Thr or T) is an amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH form under biological conditions), a carboxyl group (which is in the deprotonated −COO ...
, one of the essential amino acids. The ''erythro'' diastereomer is called allothreonine.


Multiple stereocenters

If a molecule contains two asymmetric centers, there are up to four possible configurations, and they cannot all be non-superposable mirror images of each other. The possibilities for different isomers continue to multiply as more stereocenters are added to a molecule. In general, the number of stereoisomers of a molecule can be determined by calculating 2''n'', where ''n'' = the number of chiral centers in the molecule. This holds true except in cases where the molecule has
meso Meso or mesos may refer to: * Apache Mesos, a computer clustering management platform * Meso, in-game currency for the massively multiplayer online role-playing game '' MapleStory'' * Meso compound, a stereochemical classification in chemistry * ...
forms. These meso compounds are molecules that contain stereocenters, but possess an internal plane of symmetry allowing it to be superposed on its mirror image. These equivalent configurations cannot be considered diastereomers. For ''n'' = 3, there are eight stereoisomers. Among them, there are four pairs of enantiomers: R,R,R and S,S,S; R,R,S and S,S,R; R,S,S and S,R,R; and R,S,R and S,R,S. There are many more pairs of diastereomers, because each of these configurations is a diastereomer with respect to every other configuration excluding its own enantiomer (for example, R,R,R is a diastereomer of R,R,S; R,S,R; and R,S,S). For ''n'' = 4, there are sixteen stereoisomers, or eight pairs of enantiomers. The four enantiomeric pairs of aldopentoses and the eight enantiomeric pairs of aldohexoses (subsets of the five- and six-carbon sugars) are examples of sets of compounds that differ in this way.


Diastereomerism at a Double Bond

Double bond isomers are always considered diastereomers, not enantiomers. Diastereomerism can also occur at a double bond, where the ''cis'' vs ''trans'' relative positions of substituents give two non-superposable isomers. Many conformational isomers are diastereomers as well. In the case of diastereomerism occurring at a double bond, E-Z, or entgegen and zusammen (German), is used in notating nomenclature of alkenes.


Applications

As stated previously, two diastereomers will not have identical chemical properties. This knowledge is harnessed in chiral synthesis to separate a mixture of enantiomers. This is the principle behind chiral resolution. After preparing the diastereomers, they are separated by chromatography or recrystallization. Note also the example of the
stereochemistry of ketonization of enols and enolates In organic chemistry, alkenols (shortened to enols) are a type of Functional group, reactive structure or chemical intermediate, intermediate in organic chemistry that is represented as an alkene (olefin) with a hydroxyl group attached to one en ...
.


See also

* Cahn–Ingold–Prelog priority rules for nomenclature.


References

{{Chiral synthesis Stereochemistry Isomerism