HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
– specifically, in
operator theory In mathematics, operator theory is the study of linear operators on function spaces, beginning with differential operators and integral operators. The operators may be presented abstractly by their characteristics, such as bounded linear operato ...
– a densely defined operator or partially defined operator is a type of partially defined
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-orie ...
. In a
topological Topology (from the Greek words , and ) is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, wit ...
sense, it is a
linear operator In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that pr ...
that is defined "almost everywhere". Densely defined operators often arise in
functional analysis Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, Inner product space#Definition, inner product, Norm (mathematics ...
as operations that one would like to apply to a larger class of objects than those for which they ''
a priori ('from the earlier') and ('from the later') are Latin phrases used in philosophy to distinguish types of knowledge, Justification (epistemology), justification, or argument by their reliance on experience. knowledge is independent from any ...
'' "make sense". A closed operator that is used in practice is often densely defined.


Definition

A densely defined linear operator T from one
topological vector space In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is als ...
, X, to another one, Y, is a linear operator that is defined on a
dense Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be use ...
linear subspace \operatorname(T) of X and takes values in Y, written T : \operatorname(T) \subseteq X \to Y. Sometimes this is abbreviated as T : X \to Y when the context makes it clear that X might not be the set-theoretic domain of T.


Examples

Consider the space C^0(
, 1 The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
\R) of all
real-valued In mathematics, value may refer to several, strongly related notions. In general, a mathematical value may be any definite mathematical object. In elementary mathematics, this is most often a number – for example, a real number such as or an ...
,
continuous function In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
s defined on the unit interval; let C^1(
, 1 The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
\R) denote the subspace consisting of all continuously differentiable functions. Equip C^0(
, 1 The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
\R) with the
supremum norm In mathematical analysis, the uniform norm (or ) assigns, to real- or complex-valued bounded functions defined on a set , the non-negative number :\, f\, _\infty = \, f\, _ = \sup\left\. This norm is also called the , the , the , or, when t ...
\, \,\cdot\,\, _\infty; this makes C^0(
, 1 The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
\R) into a real
Banach space In mathematics, more specifically in functional analysis, a Banach space (, ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and ...
. The differentiation operator D given by (\mathrm u)(x) = u'(x) is a densely defined operator from C^0(
, 1 The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
\R) to itself, defined on the dense subspace C^1(
, 1 The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
\R). The operator \mathrm is an example of an unbounded linear operator, since u_n (x) = e^ \quad \text \quad \frac = n. This unboundedness causes problems if one wishes to somehow continuously extend the differentiation operator D to the whole of C^0(
, 1 The comma is a punctuation mark that appears in several variants in different languages. Some typefaces render it as a small line, slightly curved or straight, but inclined from the vertical; others give it the appearance of a miniature fille ...
\R). The Paley–Wiener integral, on the other hand, is an example of a
continuous extension In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
of a densely defined operator. In any abstract Wiener space i : H \to E with
adjoint In mathematics, the term ''adjoint'' applies in several situations. Several of these share a similar formalism: if ''A'' is adjoint to ''B'', then there is typically some formula of the type :(''Ax'', ''y'') = (''x'', ''By''). Specifically, adjoin ...
j := i^* : E^* \to H, there is a natural
continuous linear operator In functional analysis and related areas of mathematics, a continuous linear operator or continuous linear mapping is a continuous linear transformation between topological vector spaces. An operator between two normed spaces is a bounded linear ...
(in fact it is the inclusion, and is an
isometry In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' me ...
) from j\left(E^*\right) to L^2(E, \gamma; \R), under which j(f) \in j\left(E^*\right) \subseteq H goes to the
equivalence class In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements ...
/math> of f in L^2(E, \gamma; \R). It can be shown that j\left(E^*\right) is dense in H. Since the above inclusion is continuous, there is a unique continuous linear extension I : H \to L^2(E, \gamma; \R) of the inclusion j\left(E^*\right) \to L^2(E, \gamma; \R) to the whole of H. This extension is the Paley–Wiener map.


See also

* * * *


References

* {{DEFAULTSORT:Densely-Defined Operator Functional analysis Hilbert spaces Linear operators Operator theory