Denitrifying
   HOME

TheInfoList



OR:

Denitrification is a microbially facilitated process where nitrate (NO3) is reduced and ultimately produces molecular
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
(N2) through a series of intermediate gaseous nitrogen oxide products. Facultative anaerobic bacteria perform denitrification as a type of respiration that reduces oxidized forms of nitrogen in response to the oxidation of an electron donor such as
organic matter Organic matter, organic material, or natural organic matter refers to the large source of carbon-based compounds found within natural and engineered, terrestrial, and aquatic environments. It is matter composed of organic compounds that have c ...
. The preferred nitrogen
electron acceptor An electron acceptor is a chemical entity that accepts electrons transferred to it from another compound. It is an oxidizing agent that, by virtue of its accepting electrons, is itself reduced in the process. Electron acceptors are sometimes mista ...
s in order of most to least thermodynamically favorable include
nitrate Nitrate is a polyatomic ion A polyatomic ion, also known as a molecular ion, is a covalent bonded set of two or more atoms, or of a metal complex, that can be considered to behave as a single unit and that has a net charge that is not zer ...
(NO3),
nitrite The nitrite polyatomic ion, ion has the chemical formula . Nitrite (mostly sodium nitrite) is widely used throughout chemical and pharmaceutical industries. The nitrite anion is a pervasive intermediate in the nitrogen cycle in nature. The name ...
(NO2),
nitric oxide Nitric oxide (nitrogen oxide or nitrogen monoxide) is a colorless gas with the formula . It is one of the principal oxides of nitrogen. Nitric oxide is a free radical: it has an unpaired electron, which is sometimes denoted by a dot in its che ...
(NO),
nitrous oxide Nitrous oxide (dinitrogen oxide or dinitrogen monoxide), commonly known as laughing gas, nitrous, or nos, is a chemical compound, an oxide of nitrogen with the formula . At room temperature, it is a colourless non-flammable gas, and has a ...
(N2O) finally resulting in the production of dinitrogen (N2) completing the
nitrogen cycle The nitrogen cycle is the biogeochemical cycle by which nitrogen is converted into multiple chemical forms as it circulates among atmospheric, terrestrial, and marine ecosystems. The conversion of nitrogen can be carried out through both biologi ...
. Denitrifying microbes require a very low oxygen concentration of less than 10%, as well as organic C for energy. Since denitrification can remove NO3, reducing its
leaching Leaching is the loss or extraction of certain materials from a carrier into a liquid (usually, but not always a solvent). and may refer to: *Leaching (agriculture), the loss of water-soluble plant nutrients from the soil; or applying a small amoun ...
to groundwater, it can be strategically used to treat sewage or animal residues of high nitrogen content. Denitrification can leak N2O, which is an
ozone-depleting substance Ozone depletion consists of two related events observed since the late 1970s: a steady lowering of about four percent in the total amount of ozone in Earth, Earth's atmosphere, and a much larger springtime decrease in stratospheric ozone (the ozo ...
and a
greenhouse gas A greenhouse gas (GHG or GhG) is a gas that Absorption (electromagnetic radiation), absorbs and Emission (electromagnetic radiation), emits radiant energy within the thermal infrared range, causing the greenhouse effect. The primary greenhouse ...
that can have a considerable influence on global warming. The process is performed primarily by heterotrophic
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among ...
(such as ''
Paracoccus denitrificans ''Paracoccus denitrificans'', is a coccoid bacterium known for its nitrate reducing properties, its ability to replicate under conditions of hypergravity and for being a relative of the eukaryotic mitochondrion (endosymbiotic theory). Descripti ...
'' and various
pseudomonads The Pseudomonadaceae are a family of bacteria which includes the genera ''Azomonas'', ''Azorhizophilus'', ''Azotobacter'', '' Mesophilobacter'', ''Pseudomonas'' (the type genus), and '' Rugamonas''. The family Azotobacteraceae was recently recl ...
), although autotrophic denitrifiers have also been identified (e.g., '' Thiobacillus denitrificans''). Denitrifiers are represented in all main phylogenetic groups. Generally several species of bacteria are involved in the complete reduction of nitrate to N2, and more than one enzymatic pathway has been identified in the reduction process. The denitrification process does not only provide energy to the organism performing nitrate reduction to dinitrogen gas, but also some anaerobic ciliates can use denitrifying endosymbionts to gain energy similar to the use of mitochondria in oxygen respiring organisms. Direct reduction from nitrate to
ammonium The ammonium cation is a positively-charged polyatomic ion with the chemical formula or . It is formed by the protonation of ammonia (). Ammonium is also a general name for positively charged or protonated substituted amines and quaternary a ...
, a process known as dissimilatory nitrate reduction to ammonium or DNRA, is also possible for organisms that have the nrf-
gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a ba ...
. This is less common than denitrification in most ecosystems as a means of nitrate reduction. Other genes known in microorganisms which denitrify include ''nir'' (nitrite reductase) and ''nos'' (nitrous oxide reductase) among others; organisms identified as having these genes include '' Alcaligenes faecalis'', ''Alcaligenes xylosoxidans'', many in the genus ''Pseudomonas'', '' Bradyrhizobium japonicum'', and ''Blastobacter denitrificans''.


Overview


Half reactions

Denitrification generally proceeds through some combination of the following half reactions, with the enzyme catalyzing the reaction in parentheses: * NO3 + 2 H+ + 2 e + H2O (
Nitrate reductase Nitrate reductases are molybdoenzymes that reduce nitrate (NO) to nitrite (NO). This reaction is critical for the production of protein in most crop plants, as nitrate is the predominant source of nitrogen in fertilized soils. Types Euka ...
) * + 2 H+ + e → NO + H2O (
Nitrite reductase Nitrite reductase refers to any of several classes of enzymes that catalyze the reduction of nitrite. There are two classes of NIR's. A multi haem enzyme reduces NO2− to a variety of products. Copper containing enzymes carry out a single elect ...
) * 2 NO + 2 H+ + 2 e → + H2O (
Nitric-oxide reductase Nitric oxide reductase, an enzyme, catalyzes the reduction of nitric oxide (NO) to nitrous oxide (N2O). The enzyme participates in nitrogen metabolism and in the microbial defense against nitric oxide toxicity. The catalyzed reaction may be depen ...
) * + 2 H+ + 2 e → + H2O (
Nitrous-oxide reductase In enzymology, a nitrous oxide reductase also known as nitrogen:acceptor oxidoreductase (N2O-forming) is an enzyme that catalyzes the final step in bacterial denitrification, the reduction of nitrous oxide to dinitrogen. : N2O + 2 reduced cytocho ...
) The complete process can be expressed as a net balanced
redox Redox (reduction–oxidation, , ) is a type of chemical reaction in which the oxidation states of substrate (chemistry), substrate change. Oxidation is the loss of Electron, electrons or an increase in the oxidation state, while reduction ...
reaction, where
nitrate Nitrate is a polyatomic ion A polyatomic ion, also known as a molecular ion, is a covalent bonded set of two or more atoms, or of a metal complex, that can be considered to behave as a single unit and that has a net charge that is not zer ...
(NO3) gets fully reduced to dinitrogen (N2): * 2 NO3 + 10 e + 12 H+ → N2 + 6 H2O


Conditions of denitrification

In nature, denitrification can take place in both terrestrial and marine
ecosystem An ecosystem (or ecological system) consists of all the organisms and the physical environment with which they interact. These biotic and abiotic components are linked together through nutrient cycles and energy flows. Energy enters the syste ...
s. Typically, denitrification occurs in anoxic environments, where the concentration of dissolved and freely available oxygen is depleted. In these areas, nitrate (NO3) or nitrite () can be used as a substitute terminal electron acceptor instead of
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
(O2), a more energetically favourable electron acceptor. Terminal electron acceptor is a compound that gets reduced in the reaction by receiving electrons. Examples of anoxic environments can include
soil Soil, also commonly referred to as earth or dirt, is a mixture of organic matter, minerals, gases, liquids, and organisms that together support life. Some scientific definitions distinguish ''dirt'' from ''soil'' by restricting the former te ...
s,
groundwater Groundwater is the water present beneath Earth's surface in rock and soil pore spaces and in the fractures of rock formations. About 30 percent of all readily available freshwater in the world is groundwater. A unit of rock or an unconsolidate ...
,
wetlands A wetland is a distinct ecosystem that is flooded or saturated by water, either permanently (for years or decades) or seasonally (for weeks or months). Flooding results in oxygen-free (anoxic) processes prevailing, especially in the soils. The ...
, oil reservoirs, poorly ventilated corners of the ocean and
seafloor sediments Marine sediment, or ocean sediment, or seafloor sediment, are deposits of insoluble particles that have accumulated on the seafloor. These particles have their origins in soil and rocks and have been transported from the land to the sea, mainly ...
. Furthermore, denitrification can occur in oxic environments as well. High activity of denitrifiers can be observed in the intertidal zones, where the tidal cycles cause fluctuations of oxygen concentration in sandy coastal sediments. For example, the bacterial species ''Paracoccus denitrificans'' engages in denitrification under both oxic and anoxic conditions simultaneously. Upon oxygen exposure, the bacteria is able to utilize nitrous oxide reductase, an enzyme that catalyzes the last step of denitrification. Aerobic denitrifiers are mainly Gram-negative bacteria in the phylum Proteobacteria. Enzymes NapAB, NirS, NirK and NosZ are located in the periplasm, a wide space bordered by the cytoplasmic and the outer membrane in Gram-negative bacteria. Denitrification can lead to a condition called
isotopic fractionation Isotope fractionation describes fractionation processes that affect the relative abundance of isotopes, phenomena which are taken advantage of in isotope geochemistry and other fields. Normally, the focus is on stable isotopes of the same element. ...
in the soil environment. The two stable isotopes of nitrogen, 14N and 15N are both found in the sediment profiles. The lighter isotope of nitrogen, 14N, is preferred during denitrification, leaving the heavier nitrogen isotope, 15N, in the residual matter. This selectivity leads to the enrichment of 14N in the biomass compared to 15N. Moreover, the relative abundance of 14N can be analyzed to distinguish denitrification apart from other processes in nature.


Use in wastewater treatment

Denitrification is commonly used to remove nitrogen from
sewage Sewage (or domestic sewage, domestic wastewater, municipal wastewater) is a type of wastewater that is produced by a community of people. It is typically transported through a sewer system. Sewage consists of wastewater discharged from residenc ...
and municipal wastewater. It is also an instrumental process in constructed wetlands and riparian zones for the prevention of groundwater pollution with nitrate resulting from excessive agricultural or residential
fertilizer A fertilizer (American English) or fertiliser (British English; see spelling differences) is any material of natural or synthetic origin that is applied to soil or to plant tissues to supply plant nutrients. Fertilizers may be distinct from ...
usage. Wood chip bioreactors have been studied since the 2000s and are effective in removing nitrate from agricultural run off and even manure. Reduction under anoxic conditions can also occur through process called anaerobic ammonium oxidation (
anammox Anammox, an abbreviation for anaerobic ammonium oxidation, is a globally important microbial process of the nitrogen cycle that takes place in many natural environments. The bacteria mediating this process were identified in 1999, and were a grea ...
): :NH4+ + NO2 → N2 + 2 H2O In some
wastewater treatment plants Wastewater treatment is a process used to remove contaminants from wastewater and convert it into an effluent that can be returned to the water cycle. Once returned to the water cycle, the effluent creates an acceptable impact on the environmen ...
, compounds such as
methanol Methanol (also called methyl alcohol and wood spirit, amongst other names) is an organic chemical and the simplest aliphatic alcohol, with the formula C H3 O H (a methyl group linked to a hydroxyl group, often abbreviated as MeOH). It is a ...
,
ethanol Ethanol (abbr. EtOH; also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic compound. It is an Alcohol (chemistry), alcohol with the chemical formula . Its formula can be also written as or (an ethyl ...
,
acetate An acetate is a salt (chemistry), salt formed by the combination of acetic acid with a base (e.g. Alkali metal, alkaline, Alkaline earth metal, earthy, Transition metal, metallic, nonmetallic or radical Radical (chemistry), base). "Acetate" als ...
, glycerin, or proprietary products are added to the wastewater to provide a carbon and electron source for denitrifying bacteria. The microbial ecology of such engineered denitrification processes is determined by the nature of the electron donor and the process operating conditions. Denitrification processes are also used in the treatment of
industrial wastewater Industrial wastewater treatment describes the processes used for treating wastewater that is produced by industries as an undesirable by-product. After treatment, the treated industrial wastewater (or effluent) may be reused or released to a sa ...
. Many denitrifying bioreactor types and designs are available commercially for the industrial applications, including Electro-Biochemical Reactors (EBRs), membrane bioreactors (MBRs), and moving bed bioreactors (MBBRs). Aerobic denitrification, conducted by aerobic denitrifiers, may offer the potential to eliminate the need for separate tanks and reduce sludge yield. There are less stringent alkalinity requirements because alkalinity generated during denitrification can partly compensate for the alkalinity consumption in nitrification.


Non-biological denitrification

A variety of non-biological methods can remove nitrate. These include methods that can destroy nitrogen compounds, such as chemical and electrochemical methods, and those that selectively transfer nitrate to a concentrated waste stream, such as ion exchange or reverse osmosis. Chemical removal of nitrate can occur through advanced oxidation processes, although it may produce hazardous byproducts. Electrochemical methods can remove nitrate by via a voltage applied across electrodes, with degradation usually occurring at the cathode. Effective cathode materials include transition metals, post transition metals, and semi-conductors like TiO2. Electrochemical methods can often avoid requiring costly chemical additives, but their effectiveness can be constrained by the pH and ions present. Reverse osmosis is highly effective in removing small charged solutes like nitrate, but it may also remove desirable nutrients, create large volumes of wastewater, and require increased pumping pressures. Ion exchange can selectively remove nitrate from water without large waste streams, but do require regeneration and may face challenges with absorption of undesired ions.


See also

* Aerobic denitrification *
Anaerobic respiration Anaerobic respiration is respiration using electron acceptors other than molecular oxygen (O2). Although oxygen is not the final electron acceptor, the process still uses a respiratory electron transport chain. In aerobic organisms undergoing re ...
* Bioremediation *
Climate change In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to E ...
*
Hypoxia (environmental) Hypoxia refers to low oxygen conditions. Normally, 20.9% of the gas in the atmosphere is oxygen. The partial pressure of oxygen in the atmosphere is 20.9% of the total barometric pressure. In water, oxygen levels are much lower, approximately 7 p ...
*
Nitrogen fixation Nitrogen fixation is a chemical process by which molecular nitrogen (), with a strong triple covalent bond, in the air is converted into ammonia () or related nitrogenous compounds, typically in soil or aquatic systems but also in industry. Atmo ...
*
Simultaneous nitrification-denitrification Simultaneity may refer to: * Relativity of simultaneity, a concept in special relativity. * Simultaneity (music), more than one complete musical texture occurring at the same time, rather than in succession * Simultaneity, a concept in Endogene ...


References

{{reflist Nitrogen cycle Environmental microbiology