In
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, a 6-demicube or demihexteract is a
uniform 6-polytope
In six-dimensional geometry, a uniform 6-polytope is a six-dimensional uniform polytope. A uniform polypeton is vertex-transitive, and all facets are uniform 5-polytopes.
The complete set of convex uniform 6-polytopes has not been determined, bu ...
, constructed from a ''6-cube'' (
hexeract
In geometry, a 6-cube is a six-dimensional hypercube with 64 Vertex (geometry), vertices, 192 Edge (geometry), edges, 240 square Face (geometry), faces, 160 cubic Cell (mathematics), cells, 60 tesseract 4-faces, and 12 5-cube 5-faces.
It has Sch ...
) with
alternated vertices removed. It is part of a dimensionally infinite family of
uniform polytope
In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. The uniform polytopes in two dimensions are the regular polygons (the definition is different in 2 dimensions to exclude vert ...
s called
demihypercube
In geometry, demihypercubes (also called ''n-demicubes'', ''n-hemicubes'', and ''half measure polytopes'') are a class of ''n''-polytopes constructed from alternation of an ''n''-hypercube, labeled as ''hγn'' for being ''half'' of the hype ...
s.
E. L. Elte
Emanuel Lodewijk Elte (16 March 1881 in Amsterdam – 9 April 1943 in Sobibor extermination camp, Sobibór)[ Em ...]
identified it in 1912 as a semiregular polytope, labeling it as HM
6 for a 6-dimensional ''half measure'' polytope.
Coxeter
Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century.
Biography
Coxeter was born in Kensington to ...
named this polytope as 1
31 from its
Coxeter diagram
Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century.
Biography
Coxeter was born in Kensington to ...
, with a ring on one of the 1-length branches, . It can named similarly by a 3-dimensional exponential
Schläfli symbol
In geometry, the Schläfli symbol is a notation of the form \ that defines regular polytopes and tessellations.
The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to more ...
or .
Cartesian coordinates
Cartesian coordinates
A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in t ...
for the vertices of a demihexeract centered at the origin are alternate halves of the
hexeract
In geometry, a 6-cube is a six-dimensional hypercube with 64 Vertex (geometry), vertices, 192 Edge (geometry), edges, 240 square Face (geometry), faces, 160 cubic Cell (mathematics), cells, 60 tesseract 4-faces, and 12 5-cube 5-faces.
It has Sch ...
:
: (±1,±1,±1,±1,±1,±1)
with an odd number of plus signs.
As a configuration
This
configuration matrix represents the 6-demicube. The rows and columns correspond to vertices, edges, faces, cells, 4-faces and 5-faces. The diagonal numbers say how many of each element occur in the whole 6-demicube. The nondiagonal numbers say how many of the column's element occur in or at the row's element.
The diagonal f-vector numbers are derived through the
Wythoff construction
In geometry, a Wythoff construction, named after mathematician Willem Abraham Wythoff, is a method for constructing a uniform polyhedron or plane tiling. It is often referred to as Wythoff's kaleidoscopic construction.
Construction process
...
, dividing the full group order of a subgroup order by removing one mirror at a time.
Images
Related polytopes
There are 47 uniform polytopes with D
6 symmetry, 31 are shared by the B
6 symmetry, and 16 are unique:
The 6-demicube, 1
31 is third in a dimensional series of uniform polytopes, expressed by
Coxeter
Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century.
Biography
Coxeter was born in Kensington to ...
as k
31 series. The fifth figure is a Euclidean honeycomb,
331, and the final is a noncompact hyperbolic honeycomb, 4
31. Each progressive
uniform polytope
In geometry, a uniform polytope of dimension three or higher is a vertex-transitive polytope bounded by uniform facets. The uniform polytopes in two dimensions are the regular polygons (the definition is different in 2 dimensions to exclude vert ...
is constructed from the previous as its
vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
Definitions
Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connect ...
.
It is also the second in a dimensional series of uniform polytopes and honeycombs, expressed by
Coxeter
Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century.
Biography
Coxeter was born in Kensington to ...
as 1
3k series. The fourth figure is the Euclidean honeycomb
133 and the final is a noncompact hyperbolic honeycomb, 1
34.
Skew icosahedron
Coxeter identified a subset of 12 vertices that form a
regular skew icosahedron
In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes and . The plural can be either "icosahedra" () or "icosahedrons".
There are infinitely many non- similar shapes of icosahedra, some of them being more symmetrica ...
with the same symmetries as the icosahedron itself, but at different angles. He dubbed this the regular skew icosahedron.
References
*
H.S.M. Coxeter
Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century.
Biography
Coxeter was born in Kensington t ...
:
** Coxeter, ''
Regular Polytopes
In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry. All its elements or -faces (for all , where is the dimension of the polytope) — cells, f ...
'', (3rd edition, 1973), Dover edition, , p.296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
** H.S.M. Coxeter, ''Regular Polytopes'', 3rd Edition, Dover New York, 1973, p.296, Table I (iii): Regular Polytopes, three regular polytopes in n-dimensions (n≥5)
** Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,
*** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'',
ath. Zeit. 46 (1940) 380-407, MR 2,10*** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'',
ath. Zeit. 188 (1985) 559-591*** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'',
ath. Zeit. 200 (1988) 3-45*
John H. Conway
John Horton Conway (26 December 1937 – 11 April 2020) was an English people, English mathematician active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory. He also made contributions to ...
, Heidi Burgiel, Chaim Goodman-Strass, ''The Symmetries of Things'' 2008, (Chapter 26. pp. 409: Hemicubes: 1
n1)
*
External links
*
Multi-dimensional Glossary
{{Polytopes
6-polytopes