HOME

TheInfoList



OR:

In the
mathematical Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
field of algebraic graph theory, the degree matrix of an
undirected graph In discrete mathematics, particularly in graph theory, a graph is a structure consisting of a set of objects where some pairs of the objects are in some sense "related". The objects are represented by abstractions called '' vertices'' (also call ...
is a
diagonal matrix In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices. Elements of the main diagonal can either be zero or nonzero. An example of a 2×2 diagon ...
which contains information about the degree of each vertex—that is, the number of edges attached to each vertex.. It is used together with the
adjacency matrix In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph (discrete mathematics), graph. The elements of the matrix (mathematics), matrix indicate whether pairs of Vertex (graph theory), vertices ...
to construct the
Laplacian matrix In the mathematical field of graph theory, the Laplacian matrix, also called the graph Laplacian, admittance matrix, Kirchhoff matrix, or discrete Laplacian, is a matrix representation of a graph. Named after Pierre-Simon Laplace, the graph Lap ...
of a graph: the Laplacian matrix is the difference of the degree matrix and the adjacency matrix..


Definition

Given a graph G=(V,E) with , V, =n, the degree matrix D for G is a n \times n
diagonal matrix In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices. Elements of the main diagonal can either be zero or nonzero. An example of a 2×2 diagon ...
defined as :D_:=\left\{ \begin{matrix} \deg(v_i) & \mbox{if}\ i = j \\ 0 & \mbox{otherwise} \end{matrix} \right. where the degree \deg(v_i) of a vertex counts the number of times an edge terminates at that vertex. In an
undirected graph In discrete mathematics, particularly in graph theory, a graph is a structure consisting of a set of objects where some pairs of the objects are in some sense "related". The objects are represented by abstractions called '' vertices'' (also call ...
, this means that each loop increases the degree of a vertex by two. In a directed graph, the term ''degree'' may refer either to indegree (the number of incoming edges at each vertex) or outdegree (the number of outgoing edges at each vertex).


Example

The following undirected graph has a 6x6 degree matrix with values: {, class="wikitable" ! Vertex labeled graph !Degree matrix , - , , \begin{pmatrix} 4 & 0 & 0 & 0 & 0 & 0\\ 0 & 3 & 0 & 0 & 0 & 0\\ 0 & 0 & 2 & 0 & 0 & 0\\ 0 & 0 & 0 & 3 & 0 & 0\\ 0 & 0 & 0 & 0 & 3 & 0\\ 0 & 0 & 0 & 0 & 0 & 1\\ \end{pmatrix} Note that in the case of undirected graphs, an edge that starts and ends in the same node increases the corresponding degree value by 2 (i.e. it is counted twice).


Properties

The degree matrix of a k-regular graph has a constant diagonal of k. According to the degree sum formula, the trace of the degree matrix is twice the number of edges of the considered graph.


References

{{Matrix classes Algebraic graph theory Matrices (mathematics)