HOME

TheInfoList



OR:

In
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic function, integer-valued functions. German mathematician Carl Friedrich Gauss (1777 ...
, a deficient number or defective number is a number ''n'' for which the sum of divisors of ''n'' is less than 2''n''. Equivalently, it is a number for which the sum of proper divisors (or
aliquot sum In number theory, the aliquot sum ''s''(''n'') of a positive integer ''n'' is the sum of all proper divisors of ''n'', that is, all divisors of ''n'' other than ''n'' itself. That is, :s(n)=\sum\nolimits_d. It can be used to characterize the prim ...
) is less than ''n''. For example, the proper divisors of 8 are 1, 2, and 4, and their sum is less than 8, so 8 is deficient. Denoting by ''σ''(''n'') the sum of divisors, the value 2''n'' − ''σ''(''n'') is called the number's deficiency. In terms of the aliquot sum ''s''(''n''), the deficiency is ''n'' − ''s''(''n'').


Examples

The first few deficient numbers are :1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, ... As an example, consider the number 21. Its divisors are 1, 3, 7 and 21, and their sum is 32. Because 32 is less than 42, the number 21 is deficient. Its deficiency is 2 × 21 − 32 = 10.


Properties

Since the aliquot sums of prime numbers equal 1, all
prime number A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
s are deficient. More generally, all odd numbers with one or two distinct prime factors are deficient. It follows that there are infinitely many
odd Odd means unpaired, occasional, strange or unusual, or a person who is viewed as eccentric. Odd may also refer to: Acronym * ODD (Text Encoding Initiative) ("One Document Does it all"), an abstracted literate-programming format for describing X ...
deficient numbers. There are also an infinite number of
even Even may refer to: General * Even (given name), a Norwegian male personal name * Even (surname) * Even (people), an ethnic group from Siberia and Russian Far East ** Even language, a language spoken by the Evens * Odd and Even, a solitaire game w ...
deficient numbers as all
powers of two A power of two is a number of the form where is an integer, that is, the result of exponentiation with number two as the base and integer  as the exponent. In a context where only integers are considered, is restricted to non-negative ...
have the sum (). More generally, all
prime power In mathematics, a prime power is a positive integer which is a positive integer power of a single prime number. For example: , and are prime powers, while , and are not. The sequence of prime powers begins: 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17 ...
s p^k are deficient because their only proper divisors are 1, p, p^2, \dots, p^ which sum to \frac, which is at most p^k-1. All proper
divisor In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a multiple of m. An integer n is divisible or evenly divisible by ...
s of deficient numbers are deficient. Moreover, all proper divisors of
perfect number In number theory, a perfect number is a positive integer that is equal to the sum of its positive divisors, excluding the number itself. For instance, 6 has divisors 1, 2 and 3 (excluding itself), and 1 + 2 + 3 = 6, so 6 is a perfect number. T ...
s are deficient. There exists at least one deficient number in the interval , n + (\log n)^2/math> for all sufficiently large ''n''.Sándor et al (2006) p.108


Related concepts

Closely related to deficient numbers are
perfect number In number theory, a perfect number is a positive integer that is equal to the sum of its positive divisors, excluding the number itself. For instance, 6 has divisors 1, 2 and 3 (excluding itself), and 1 + 2 + 3 = 6, so 6 is a perfect number. T ...
s with ''σ''(''n'') = 2''n'', and
abundant number In number theory, an abundant number or excessive number is a number for which the sum of its proper divisors is greater than the number. The integer 12 is the first abundant number. Its proper divisors are 1, 2, 3, 4 and 6 for a total of 16. The ...
s with ''σ''(''n'') > 2''n''. The
natural number In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''Cardinal n ...
s were first classified as either deficient, perfect or abundant by
Nicomachus Nicomachus of Gerasa ( grc-gre, Νικόμαχος; c. 60 – c. 120 AD) was an important ancient mathematician and music theorist, best known for his works ''Introduction to Arithmetic'' and ''Manual of Harmonics'' in Greek. He was born in ...
in his '' Introductio Arithmetica'' (circa 100 CE).


See also

*
Almost perfect number In mathematics, an almost perfect number (sometimes also called slightly defective or least deficient number) is a natural number ''n'' such that the sum of all divisors of ''n'' (the sum-of-divisors function ''σ''(''n'')) is equal to 2''n'' ...
*
Amicable number Amicable numbers are two different natural numbers related in such a way that the sum of the proper divisors of each is equal to the other number. That is, σ(''a'')=''b'' and σ(''b'')=''a'', where σ(''n'') is equal to the sum of positive d ...
*
Sociable number In mathematics, sociable numbers are numbers whose aliquot sums form a periodic sequence. They are generalizations of the concepts of amicable numbers and perfect numbers. The first two sociable sequences, or sociable chains, were discovered and ...
*
Superabundant number In mathematics, a superabundant number (sometimes abbreviated as SA) is a certain kind of natural number. A natural number ''n'' is called superabundant precisely when, for all ''m'' < ''n'' :\frac 6/5. Superabundant numbers were defined by . ...


References

*


External links


The Prime Glossary: Deficient number
* * {{Classes of natural numbers Arithmetic dynamics Divisor function Integer sequences