Decision Intelligence
   HOME

TheInfoList



OR:

Decision intelligence is an engineering discipline that augments
data science Data science is an interdisciplinary field that uses scientific methods, processes, algorithms and systems to extract or extrapolate knowledge and insights from noisy, structured and unstructured data, and apply knowledge from data across a br ...
with theory from social science, decision theory, and managerial science. Its application provides a framework for best practices in organizational
decision-making In psychology, decision-making (also spelled decision making and decisionmaking) is regarded as the Cognition, cognitive process resulting in the selection of a belief or a course of action among several possible alternative options. It could be ...
and processes for applying machine learning at scale. The basic idea is that decisions are based on our understanding of how actions lead to outcomes. Decision intelligence is a discipline for analyzing this chain of
cause and effect Causality (also referred to as causation, or cause and effect) is influence by which one event, process, state, or object (''a'' ''cause'') contributes to the production of another event, process, state, or object (an ''effect'') where the cau ...
, and decision modeling is a visual language for representing these chains. A related field decision engineering also investigates the improvement of decision-making processes but is not always as closely tied to data science.


Origins and technologies

Decision intelligence is based on the recognition that, in many organizations, decision-making could be improved if a more structured approach were used. Decision intelligence seeks to overcome a decision-making "complexity ceiling", which is characterized by a mismatch between the sophistication of organizational decision-making practices and the complexity of situations in which those decisions must be made. As such, it seeks to solve some of the issues identified around complexity theory and organizations. In this sense, decision intelligence represents a practical application of the field of
complex systems A complex system is a system composed of many components which may interact with each other. Examples of complex systems are Earth's global climate, organisms, the human brain, infrastructure such as power grid, transportation or communication s ...
, which helps organizations to navigate the complex systems in which they find themselves. Decision intelligence can also be thought of as a framework that brings advanced
analytics Analytics is the systematic computational analysis of data or statistics. It is used for the discovery, interpretation, and communication of meaningful patterns in data. It also entails applying data patterns toward effective decision-making. It ...
and machine learning techniques to the desktop of the non-expert decision maker, as well as incorporating, and then extending,
data science Data science is an interdisciplinary field that uses scientific methods, processes, algorithms and systems to extract or extrapolate knowledge and insights from noisy, structured and unstructured data, and apply knowledge from data across a br ...
to overcome the problems articulated in black swan theory. Decision intelligence proponents believe that many organizations continue to make poor decisions. In response, decision intelligence seeks to unify a number of decision-making best practices, described in more detail below. Decision intelligence builds on the insight that it is possible to '' design'' the decision itself, using principles previously used for designing more tangible objects like bridges and buildings. The use of a ''visual'' design language representing decisions (see ) is an important element of decision intelligence, since it provides an intuitive common language readily understood by all decision participants. A visual metaphor improves the ability to reason about complex systems as well as to enhance
collaboration Collaboration (from Latin ''com-'' "with" + ''laborare'' "to labor", "to work") is the process of two or more people, entities or organizations working together to complete a task or achieve a goal. Collaboration is similar to cooperation. Most ...
. In addition to visual decision design, there are other two aspects of engineering disciplines that aid mass adoption. These are: #the creation of a shared language of design elements and #the use of a common methodology or process, as illustrated in the diagram above. Dr. Lorien Pratt wrote the first book about decision intelligence.


Motivation

The need for a unified methodology of decision-making is driven by a number of factors that organizations face as they make difficult decisions in a complex internal and external environment. Recognition of the broad-based inability of current methods to solve decision-making issues in practice comes from several sources, including government sources and industries such as telecommunications, media, the automotive industry, and
pharmaceuticals A medication (also called medicament, medicine, pharmaceutical drug, medicinal drug or simply drug) is a drug used to diagnose, cure, treat, or prevent disease. Drug therapy (pharmacotherapy) is an important part of the medical field and rel ...
. Examples: * The ''outcomes'' of decisions are becoming more complex, going well beyond next quarter's revenues or other tangible outcomes to multiple goals that must be satisfied together, some of which are often intangible: * Global increase in complexity:


Transferring engineering principles

Unlike other
decision making In psychology, decision-making (also spelled decision making and decisionmaking) is regarded as the cognitive process resulting in the selection of a belief or a course of action among several possible alternative options. It could be either rati ...
tools and methodologies, decision intelligence seeks to bring to bear a number of engineering practices to the process of creating a decision. These include requirements analysis, specification, scenario planning,
quality assurance Quality assurance (QA) is the term used in both manufacturing and service industries to describe the systematic efforts taken to ensure that the product(s) delivered to customer(s) meet with the contractual and other agreed upon performance, design ...
,
security Security is protection from, or resilience against, potential harm (or other unwanted coercive change) caused by others, by restraining the freedom of others to act. Beneficiaries (technically referents) of security may be of persons and social ...
, and the use of design principles as described above. During the decision execution phase, outputs produced during the design phase can be used in a number of ways; monitoring approaches like business dashboards and assumption based planning are used to track the outcome of a decision and to trigger replanning as appropriate (one view of how some of these elements combine is shown in the diagram at the start of this article). Decision intelligence has the potential to improve the quality of decisions made, the ability to make them more quickly, the ability to align organizational resources more effectively around a change in decisions, and lowers the risks associated with decisions. Furthermore, a designed decision can be reused and modified as new information is obtained.


Bringing numerical methods to the desktop

Although many elements of decision intelligence, such as sensitivity analysis and
analytics Analytics is the systematic computational analysis of data or statistics. It is used for the discovery, interpretation, and communication of meaningful patterns in data. It also entails applying data patterns toward effective decision-making. It ...
, are mature disciplines, they are not in wide use by decision makers. Decision intelligence seeks to create a visual language that serves to facilitate communication between them and quantitative experts, allowing broader utilization of these and other numerical and technical approaches. In particular, dependency links in a decision model represent cause-and-effect (as in a causal loop diagram), data flow (as in a data flow diagram), or other relationships. As an example, one link might represent the connection between "mean time to repair a problem with telephone service" and "customer satisfaction", where a short repair time would presumably raise customer satisfaction. The functional form of these dependencies can be determined by a number of approaches. Numerical approaches, which analyze data to determine these functions, include machine learning and
analytics Analytics is the systematic computational analysis of data or statistics. It is used for the discovery, interpretation, and communication of meaningful patterns in data. It also entails applying data patterns toward effective decision-making. It ...
algorithms (including
artificial neural networks Artificial neural networks (ANNs), usually simply called neural networks (NNs) or neural nets, are computing systems inspired by the biological neural networks that constitute animal brains. An ANN is based on a collection of connected unit ...
), as well as more traditional regression analysis. Results from operations research and many other quantitative approaches have a similar role to play. When data is not available (or is too noisy, uncertain, or incomplete), these dependency links can take on the form of rules as might be found in an
expert system In artificial intelligence, an expert system is a computer system emulating the decision-making ability of a human expert. Expert systems are designed to solve complex problems by reasoning through bodies of knowledge, represented mainly as if†...
or rule-based system, and so can be obtained through knowledge engineering. In this way, a decision model represents a mechanism for combining multiple relationships, as well as symbolic and subsymbolic reasoning, into a complete solution to determining the outcome of a practical decision.


Relationship to artificial intelligence and machine learning

As described above, decision model dependency links can be modeled using machine learning. In this respect, decision intelligence can be seen as a "multi-link" extension to artificial intelligence, which is most widely used for single-link analysis. From this point of view, machine learning can be viewed as answering the question "If I know/see/hear X, what can I conclude?", whereas decision intelligence answers: "If I take action X, what will be the outcome?". The latter question usually involves chains of events, sometimes including complex dynamics like feedback loops. In this way, decision intelligence unifies
complex systems A complex system is a system composed of many components which may interact with each other. Examples of complex systems are Earth's global climate, organisms, the human brain, infrastructure such as power grid, transportation or communication s ...
, machine learning, and decision analysis.


Origins

Despite decades of development of
decision support system A decision support system (DSS) is an information system that supports business or organizational decision-making activities. DSSs serve the management, operations and planning levels of an organization (usually mid and higher management) and h ...
and methodologies (like decision analysis), these are still less popular than spreadsheets as primary tools for decision-making. Decision intelligence seeks to bridge this gap, creating a critical mass of users of a common methodology and language for the core entities included in a decision, such as assumptions, external values, facts, data, and conclusions. If a pattern from previous industries holds, such a methodology will also facilitate technology adoption, by clarifying common maturity models and road maps that can be shared from one organization to another. The decision intelligence approach is multidisciplinary, unifying findings on
cognitive bias A cognitive bias is a systematic pattern of deviation from norm or rationality in judgment. Individuals create their own "subjective reality" from their perception of the input. An individual's construction of reality, not the objective input, m ...
and decision-making, situational awareness, critical and creative thinking, collaboration and organizational design, with engineering technologies. Decision intelligence is considered an improvement upon current organizational decision-making practices, which include the use of spreadsheets, text (sequential in nature, so is not a good fit for how information flows through a decision structure), and verbal argument. The movement from these largely informal structures to one in which a decision is documented in a well understood, visual language, echoes the creation of common blueprint methodologies in construction, with promise of similar benefits. Decision intelligence is both a very new and also a very old discipline. Many of its elements—such as the language of assessing assumptions, using logic to support an argument, the necessity of
critical thinking Critical thinking is the analysis of available facts, evidence, observations, and arguments to form a judgement. The subject is complex; several different definitions exist, which generally include the rational, skeptical, and unbiased analysis ...
to evaluate a decision, and understanding the impacts of bias—are ancient. Yet the realization that these elements can form a coherent whole that provides significant benefits to organizations by focusing on a common methodology is relatively new. In 2018, Google's processes and training programs in applied data science were renamed to "decision intelligence" to indicate the central role of actions and decisions in the application of data science. The extent to which the theoretical frameworks drew on the managerial and social sciences in addition to data science was an additional motivator for unifying decision intelligence into a field of study that is distinct from data science. Modern decision intelligence is highly interdisciplinary and academically inclusive. Research centering on decisions, defined broadly as biological and nonbiological action selection, is considered part of the discipline. Decision intelligence is not an umbrella term for data science and social science, however, since it does not cover components unconcerned with decisions.


Visual decision design

Because it makes visible the otherwise invisible reasoning structures used in complex decisions, the design aspect of decision intelligence draws from other conceptual representation technologies like mind mapping, conceptual graphs,
decision modeling A decision model in decision theory is the starting point for a decision method within a formal (axiomatic) system. Decision models contain at least one action axiom. An action is in the form "IF is true, THEN do ". An action axiom tests a cond ...
and semantic networks. The basic idea is that a visual metaphor enhances intuitive thinking,
inductive reasoning Inductive reasoning is a method of reasoning in which a general principle is derived from a body of observations. It consists of making broad generalizations based on specific observations. Inductive reasoning is distinct from ''deductive'' re ...
, and pattern recognition—important cognitive skills usually less accessible in a verbal or text discussion. A business decision map can be seen as one approach to a formal decision language to support decision intelligence.


Explicit representation of intangibles

Decision intelligence recognizes that many aspects of decision-making are based on intangible elements, including
opportunity cost In microeconomic theory, the opportunity cost of a particular activity is the value or benefit given up by engaging in that activity, relative to engaging in an alternative activity. More effective it means if you chose one activity (for example ...
s, employee morale, intellectual capital, brand recognition and other forms of business value that are not captured in traditional quantitative or financial models. Value network analysis—most notably value network maps—are therefore relevant here.


See also

*
Antifragility Antifragility is a property of systems in which they increase in capability to thrive as a result of stressors, shocks, volatility, noise, mistakes, faults, attacks, or failures. The concept was developed by Nassim Nicholas Taleb in his book, '' ...
* Business intelligence * Decision Management * Decision quality * Design rationale * Heuristics in judgment and decision-making * Management science


Notes

Note the following semantic variations: *
Enterprise decision management Decision management, also known as enterprise decision management (EDM) or business decision management (BDM) entails all aspects of designing, building and managing the automated decision-making systems that an organization uses to manage its int ...
(EDM) is a closely related discipline that focuses on automating decisions across an enterprise. Decision intelligence is from this point of view a superset of EDM, since it encompasses both manual and automated decision-making processes, unifying them into a common methodology that, when effective, breaks down barriers between quantitative analysis / analytics tools and departments and those with a more qualitative / strategic / management focus. * The related term "decision engineering" is used in several industries. Each of these has a meaning that is distinct from what is discussed in the present article. * Many years subsequent to the widespread use of the term, Mastercard trademarked the name "Decision Intelligence" for its AI/machine learning product. * In
behavioral economics Behavioral economics studies the effects of psychological, cognitive, emotional, cultural and social factors on the decisions of individuals or institutions, such as how those decisions vary from those implied by classical economic theory. ...
, the related term "decision engineering" can mean the deliberate manipulation of consumer choices. In this use of the term, decision intelligence is roughly analogous to soft paternalism—a quite different meaning than is covered in the present article, referring as it does to the engineering of decisions made by consumers, rather than the use of engineering principles to aid in complex decision-making. Although distinctly different, this practice draws on much of the same decision-making research as does decision intelligence (such as, for the example, the work of behavioral economist Richard Thaler). * Cost engineering measures the costs of engineering projects. Cost engineering is sometimes grouped into product engineering and design optimization as decision engineering. This can be distinguished from the broader framework of this article, which goes beyond the arena of engineering decisions to all decisions faced by organizations.See, e.g. Roy Rajkumar
"Cost engineering: why, what, and how?"
and other publications from the University of Cranfield UK's Decision Engineering Centre.
* Operations research is a largely quantitative approach to decision-making that attempts to identify optimal or near-optimal solutions to decision-making problems.


References


Bibliography

* Lorien Y. Pratt.''Link: How Decision Intelligence Connects Data, Actions, and Outcomes for a Better World'' (2019) * Peter F. Drucker.''Harvard Business Review on Decision Making.'' (2001) * John S. Hammond. ''Smart Choices: A Practical Guide to Making Better Decisions.'' (2002) * Edward Russo. ''Decision Traps.'' (1990) * Paul J.H. Shoemaker. ''Winning Decisions: Getting It Right the First Time.'' (2001) * Scott Plous. ''The Psychology of Judgment and Decision Making'' (1993)


External links


''Link , Decision Intelligence, Complexity, Machine Learning''
A blog that covers Decision Intelligence topics.
''Decision Intelligence News''
Curated news about Decision Intelligence.
What is Decision Engineering?
discusses how decision engineering is defined and proposes "building better decision systems"

is an overview of a number of quantitative decision making methods.
''Are You Ready to Reengineer Your Decision Making?''
Interview by Michael S. Hopkins with Thomas H. Davenport.
''Are you ready to re-engineer your decision making?''
adapted from article in the MIT Sloan management review, above
Master in Decision Engineering
from the University Rey Juan Carlos I (Spain).
Computer and Decision Engineering
at Université Libre de Bruxelles
Decision Engineering Centre
at Cranfield University
The Decision Science and Decision Engineering Laboratory
at Michigan Technological University
Navigating the telecom ship: The CEM Control Center Catalyst
is a collaborative case study describing a decision engineering proof-of-concept developed by Vodafone, Netezza, Nokia Siemens Networks, N-Pulse, Quantellia, and Subex. {{DEFAULTSORT:Decision Engineering Decision-making