Dark-energy Dominated Era
   HOME

TheInfoList



OR:

The relative expansion of the universe is parametrized by a dimensionless scale factor a . Also known as the cosmic scale factor or sometimes the Robertson Walker scale factor, this is a key parameter of the
Friedmann Friedman, Friedmann, and Freedman are surnames of German origin, and from the 17th century were also adopted by Ashkenazi Jews. It is the 9th most common surname in Israel (8th among Jews) and most common exclusively Ashkenazi name. They may refer ...
equations In mathematics, an equation is a formula that expresses the equality of two expressions, by connecting them with the equals sign . The word ''equation'' and its cognates in other languages may have subtly different meanings; for example, in F ...
. In the early stages of the
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
, most of the energy was in the form of radiation, and that radiation was the dominant influence on the expansion of the universe. Later, with cooling from the expansion the roles of matter and radiation changed and the universe entered a matter-dominated era. Recent results suggest that we have already entered an era dominated by dark energy, but examination of the roles of matter and radiation are most important for understanding the early universe. Using the dimensionless scale factor to characterize the expansion of the universe, the effective energy densities of radiation and matter scale differently. This leads to a radiation-dominated era in the very early universe but a transition to a matter-dominated era at a later time and, since about 4 billion years ago, a subsequent dark-energy-dominated era.


Detail

Some insight into the expansion can be obtained from a Newtonian expansion model which leads to a simplified version of the Friedmann equation. It relates the proper distance (which can change over time, unlike the comoving distance d_C which is constant and set to today's distance) between a pair of objects, e.g. two galaxy clusters, moving with the Hubble flow in an expanding or contracting FLRW universe at any arbitrary time t to their distance at some reference time t_0. The formula for this is: :d(t) = a(t)d_0,\, where d(t) is the proper distance at epoch t, d_0 is the distance at the reference time t_0, usually also referred to as comoving distance, and a(t) is the scale factor. Thus, by definition, d_0=d(t_0) and a(t_0) = 1. The scale factor is dimensionless, with t counted from the birth of the universe and t_0 set to the present age of the universe: 13.799\pm0.021\,\mathrm giving the current value of a as a(t_0) or 1. The evolution of the scale factor is a dynamical question, determined by the equations of general relativity, which are presented in the case of a locally isotropic, locally homogeneous universe by the Friedmann equations. The Hubble parameter is defined as: :H(t) \equiv where the dot represents a time derivative. The Hubble parameter varies with time, not with space, with the Hubble constant H_0 being its current value. From the previous equation d(t) = d_0 a(t) one can see that \dot(t) = d_0 \dot(t), and also that d_0 = \frac, so combining these gives \dot(t) = \frac, and substituting the above definition of the Hubble parameter gives \dot(t) = H(t) d(t) which is just Hubble's law. Current evidence suggests that the expansion rate of the universe is accelerating, which means that the second derivative of the scale factor \ddot(t) is positive, or equivalently that the first derivative \dot(t) is increasing over time. This also implies that any given galaxy recedes from us with increasing speed over time, i.e. for that galaxy \dot(t) is increasing with time. In contrast, the Hubble parameter seems to be decreasing with time, meaning that if we were to look at some fixed distance d and watch a series of different galaxies pass that distance, later galaxies would pass that distance at a smaller velocity than earlier ones. According to the Friedmann–Lemaître–Robertson–Walker metric which is used to model the expanding universe, if at present time we receive light from a distant object with a
redshift In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and simultaneous increase in f ...
of ''z'', then the scale factor at the time the object originally emitted that light is a(t) = \frac.


Chronology


Radiation-dominated era

After Inflation, and until about 47,000 years after the Big Bang, the dynamics of the
early universe The chronology of the universe describes the history and future of the universe according to Big Bang cosmology. Research published in 2015 estimates the earliest stages of the universe's existence as taking place 13.8 billion years ago, wit ...
were set by
radiation In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes: * ''electromagnetic radiation'', such as radio waves, microwaves, infrared, visi ...
(referring generally to the constituents of the universe which moved relativistically, principally photons and neutrinos). For a radiation-dominated universe the evolution of the scale factor in the Friedmann–Lemaître–Robertson–Walker metric is obtained solving the Friedmann equations: :a(t)\propto t^. \,


Matter-dominated era

Between about 47,000 years and 9.8 billion years after the Big Bang, the energy density of matter exceeded both the energy density of radiation and the vacuum energy density. When the
early universe The chronology of the universe describes the history and future of the universe according to Big Bang cosmology. Research published in 2015 estimates the earliest stages of the universe's existence as taking place 13.8 billion years ago, wit ...
was about 47,000 years old (redshift 3600), mass–energy density surpassed the radiation energy, although the universe remained optically thick to radiation until the universe was about 378,000 years old (redshift 1100). This second moment in time (close to the time of recombination), at which the photons which compose the cosmic microwave background radiation were last scattered, is often mistaken as marking the end of the radiation era. For a matter-dominated universe the evolution of the scale factor in the Friedmann–Lemaître–Robertson–Walker metric is easily obtained solving the Friedmann equations: :a(t)\propto t^


Dark-energy-dominated era

In physical cosmology, the dark-energy-dominated era is proposed as the last of the three phases of the known universe, the other two being the matter-dominated era and the
radiation-dominated era The relative expansion of the universe is parametrized by a dimensionless scale factor a . Also known as the cosmic scale factor or sometimes the Robertson Walker scale factor, this is a key parameter of the Friedmann equations. In the early s ...
. The dark-energy-dominated era began after the matter-dominated era, i.e. when the Universe was about 9.8 billion years old. In the era of
cosmic inflation In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the early universe. The inflationary epoch lasted from  seconds after the conjectured Big Bang singularity ...
, the Hubble parameter is also thought to be constant, so the expansion law of the dark-energy-dominated era also holds for the inflationary prequel of the big bang. The cosmological constant is given the symbol Λ, and, considered as a source term in the Einstein field equation, can be viewed as equivalent to a "mass" of empty space, or dark energy. Since this increases with the volume of the universe, the expansion pressure is effectively constant, independent of the scale of the universe, while the other terms decrease with time. Thus, as the density of other forms of matter – dust and radiation – drops to very low concentrations, the cosmological constant (or "dark energy") term will eventually dominate the energy density of the Universe. Recent measurements of the change in Hubble constant with time, based on observations of distant
supernova A supernova is a powerful and luminous explosion of a star. It has the plural form supernovae or supernovas, and is abbreviated SN or SNe. This transient astronomical event occurs during the last evolutionary stages of a massive star or when ...
e, show this acceleration in expansion rate,The Nobel Prize in Physics 2011
Retrieved 18 May 2017. indicating the presence of such dark energy. For a dark-energy-dominated universe, the evolution of the scale factor in the Friedmann–Lemaître–Robertson–Walker metric is easily obtained solving the Friedmann equations: :a(t)\propto \exp(H_0t) Here, the coefficient H_0in the exponential, the Hubble constant, is :H_0 = \sqrt = \sqrt. This exponential dependence on time makes the spacetime geometry identical to the
de Sitter universe A de Sitter universe is a cosmological solution to the Einstein field equations of general relativity, named after Willem de Sitter. It models the universe as spatially flat and neglects ordinary matter, so the dynamics of the universe are dominat ...
, and only holds for a positive sign of the cosmological constant, which is the case according to the currently accepted value of the cosmological constant, Λ, that is approximately The current density of the observable universe is of the order of and the age of the universe is of the order of 13.8 billion years, or . The Hubble constant, H_0, is (The Hubble time is 13.79 billion years).


See also

*
Cosmological principle In modern physical cosmology, the cosmological principle is the notion that the spatial distribution of matter in the universe is homogeneous and isotropic when viewed on a large enough scale, since the forces are expected to act uniformly throu ...
*
Lambda-CDM model The ΛCDM (Lambda cold dark matter) or Lambda-CDM model is a parameterization of the Big Bang cosmological model in which the universe contains three major components: first, a cosmological constant denoted by Lambda (Greek Λ) associated with d ...
*
Redshift In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and simultaneous increase in f ...


Notes


References

* *


External links


Relation of the scale factor with the cosmological constant and the Hubble constant
{{DEFAULTSORT:Scale Factor (Cosmology) Physical cosmology