Daniele Mortari
   HOME

TheInfoList



OR:

Daniele Mortari (born 30 June 1955) is Professor of Aerospace Engineering at
Texas A&M University Texas A&M University (Texas A&M, A&M, or TAMU) is a public, land-grant, research university in College Station, Texas. It was founded in 1876 and became the flagship institution of the Texas A&M University System in 1948. As of late 2021, T ...
and Chief Scientist for Space for Texas A&M ASTRO Center. Mortari is known for inventing the Flower Constellations and the ''k''-vector range searching technique and the Theory of Functional Connections. Mortari was elected Member of the International Academy of Astronautics (IAA) in 2021. He was named
Fellow of the Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers (IEEE) is a 501(c)(3) professional association for electronic engineering and electrical engineering (and associated disciplines) with its corporate office in New York City and its operation ...
(IEEE) in 2016 for contributions to navigational aspects of space systems", Fellow of the American Astronautical Society (AAS) in 2012 "for outstanding contributions to astronautics", recipient of 2015 Dirk Brower Award (AAS) "for seminal contributions to the theory and practice of spacecraft orbital and rotational dynamics, particularly attitude determination and satellite constellation design", and of 2007 IEEE Judith A. Resnik Award "for innovative designs of orbiting spacecraft constellations, and efficient algorithms for star identification and spacecraft attitude estimation". His other notable awards include: Texas A&M College of Engineering, Herbert H. Richardson Fellow Award, (2015). Texas A&M College of Engineering, William Keeler Memorial Award, (2015). Best Paper Award, Mechanics Meeting Conference, Honorary Member of IEEE-AESS Space System Technical Panel, (Sep. 2009),
NASA Group Achievement Award The NASA Group Achievement Award (GAA) is an award given by NASA to groups of government or non-government personnel in recognition of group accomplishments contributing to NASA's mission. The criteria for earning the Group Achievement Award are ...
, (May 2008), AIAA, Associate Fellow, (Nov. 2007), IEEE-AESS Distinguished Speaker, (Feb. 2005), Spacecraft Technology Center Award (Jan. 2003), NASA Group Achievement Award, (May 1989).


Flower constellations

The original theory of Flower Constellations has been proposed in 2004. Then, the theory has evolved, moving to the 2-D Lattice theory, to the 3-D lattice theory, and recently, to the Necklace theory. These constellations are particularly suitable for classic applications, such as space-based navigation systems (e.g., GPS and Galileo), Earth observation systems (global, regional, persistent, uniform, weighted), and communication systems. Some more advanced and futuristic applications, such as Hyland's intensity correlation interferometric system, configurations to provide global internet broadband service from space, and solar system communication networks, are currently studied.


K-vector Range Searching Technique

The ''K''-vector Range Searching Technique is a range searching technique that can be applied to fast retrieve data from any static database. The ''k''-vector technique was initially proposed to identify stars observed by star trackers on board spacecraft. Then, it has been applied to solve different kinds of problems belonging to different fields, such as: 1) nonlinear functions inversion and intersection, 2) extensive sampling data generation with assigned analytical (or numerical) distribution, 3) find approximate solutions of nonlinear Diophantine equations, and 4) iso-surface identification for 3-dimensional data distributions and level set analysis.


Theory of Functional Connections

The Theory of Functional Connections (TFC) is a mathematical framework generalizing interpolation. TFC derives analytical functionals representing all possible functions subject to a set of constraints. These functionals restrict the whole space of functions to just the subspace that fully satisfies the constraints. Using these functionals, constrained optimization problems are transformed into unconstrained problems. Then, already available and optimized solution methods can be used. The TFC theory has been developed for multivariate rectangular domains subject to absolute, integral, relative, and linear combinations of constraints. Numerically efficient applications of TFC have already been implemented in optimization problems, especially in solving differential equations. In this area, TFC has unified initial, boundary, and multi-value problems by providing fast solutions at machine-error accuracy. This approach has already been applied to solve, in real-time, direct
optimal control Optimal control theory is a branch of mathematical optimization that deals with finding a control for a dynamical system over a period of time such that an objective function is optimized. It has numerous applications in science, engineering and ...
problems, such as autonomous landing on a large planetary body. Additional applications of TFC are found in nonlinear programming and
calculus of variations The calculus of variations (or Variational Calculus) is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions t ...
, in
Radiative Transfer Radiative transfer is the physical phenomenon of energy transfer in the form of electromagnetic radiation. The propagation of radiation through a medium is affected by absorption, emission, and scattering processes. The equation of radiative tran ...
Compartmental models in epidemiology Compartmental models are a very general modelling technique. They are often applied to the mathematical modelling of infectious diseases. The population is assigned to compartments with labels – for example, S, I, or R, (Susceptible, Infectious, ...
, and in
Machine learning Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 'learn', that is, methods that leverage data to improve performance on some set of tasks. It is seen as a part of artificial intelligence. Machine ...
, where orders of magnitude improvements in speed and accuracy are obtained thanks to the search-space restriction enabled by TFC.


References

{{DEFAULTSORT:Mortari, Daniele Fellows of the IEEE Living people 21st-century American engineers 1955 births