Daisyworld
   HOME

TheInfoList



OR:

Daisyworld, a computer simulation, is a hypothetical world
orbit In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such as ...
ing a star whose radiant energy is slowly increasing or decreasing. It is meant to mimic important elements of the Earth-Sun system, and was introduced by James Lovelock and Andrew Watson in a paper published in 1983 to illustrate the plausibility of the Gaia hypothesis. In the original 1983 version, Daisyworld is seeded with two
varieties Variety may refer to: Arts and entertainment Entertainment formats * Variety (radio) * Variety show, in theater and television Films * ''Variety'' (1925 film), a German silent film directed by Ewald Andre Dupont * ''Variety'' (1935 film), ...
of daisy as its only life forms: black daisies and white daisies. White petaled daisies reflect
light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 te ...
, while black petaled daisies absorb light. The simulation tracks the two daisy populations and the surface temperature of Daisyworld as the sun's rays grow more powerful. The surface temperature of Daisyworld remains almost constant over a broad range of solar output.


Mathematical model to sustain the Gaia hypothesis

The purpose of the model is to demonstrate that feedback mechanisms can evolve from the actions or activities of self-interested organisms, rather than through classic
group selection Group selection is a proposed mechanism of evolution in which natural selection acts at the level of the group, instead of at the level of the individual or gene. Early authors such as V. C. Wynne-Edwards and Konrad Lorenz argued that the behavi ...
mechanisms. Daisyworld examines the energy budget of a planet populated by two different types of plants, black daisies and white daisies. The colour of the daisies influences the
albedo Albedo (; ) is the measure of the diffuse reflection of solar radiation out of the total solar radiation and measured on a scale from 0, corresponding to a black body that absorbs all incident radiation, to 1, corresponding to a body that refl ...
of the planet such that black daisies absorb light and warm the planet, while white daisies reflect light and cool the planet. Competition between the daisies (based on temperature-effects on growth rates) leads to a balance of populations that tends to favour a planetary temperature close to the optimum for daisy growth. Lovelock and Watson demonstrated the stability of Daisyworld by making its
sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
evolve along the main sequence, taking it from low to high solar constant. This perturbation of Daisyworld's receipt of
solar radiation Solar irradiance is the power per unit area (surface power density) received from the Sun in the form of electromagnetic radiation in the wavelength range of the measuring instrument. Solar irradiance is measured in watts per square metre ( ...
caused the balance of daisies to gradually shift from black to white but the planetary temperature was always regulated back to this optimum (except at the extreme ends of solar evolution). This situation is very different from the corresponding
abiotic In biology and ecology, abiotic components or abiotic factors are non-living chemical and physical parts of the environment that affect living organisms and the functioning of ecosystems. Abiotic factors and the phenomena associated with them under ...
world, where temperature is unregulated and rises linearly with solar output. Later versions of Daisyworld introduced a range of grey daisies, as well as populations of grazers and
predators Predation is a biological interaction where one organism, the predator, kills and eats another organism, its prey. It is one of a family of common feeding behaviours that includes parasitism and micropredation (which usually do not kill th ...
, and found that these further increased the stability of the
homeostasis In biology, homeostasis (British also homoeostasis) (/hɒmɪə(ʊ)ˈsteɪsɪs/) is the state of steady internal, physical, and chemical conditions maintained by living systems. This is the condition of optimal functioning for the organism and ...
. More recently, other research, modeling the real biochemical cycles of Earth, and using various types of organisms (e.g.
photosynthesis Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored i ...
ers,
decomposers Decomposers are Organism, organisms that break down dead or decaying organisms; they carry out decomposition, a process possible by only certain kingdoms, such as fungi. Like herbivores and predators, decomposers are heterotrophic, meaning that t ...
,
herbivores A herbivore is an animal anatomically and physiologically adapted to eating plant material, for example foliage or marine algae, for the main component of its diet. As a result of their plant diet, herbivorous animals typically have mouthpart ...
and primary and secondary
carnivores A carnivore , or meat-eater (Latin, ''caro'', genitive ''carnis'', meaning meat or "flesh" and ''vorare'' meaning "to devour"), is an animal or plant whose food and energy requirements derive from animal tissues (mainly muscle, fat and other so ...
) has also been shown to produce Daisyworld-like regulation and stability, which helps to explain planetary
biological diversity Biodiversity or biological diversity is the variety and variability of life on Earth. Biodiversity is a measure of variation at the genetic ('' genetic variability''), species ('' species diversity''), and ecosystem ('' ecosystem diversity'') ...
. This enables nutrient
recycling Recycling is the process of converting waste materials into new materials and objects. The recovery of energy from waste materials is often included in this concept. The recyclability of a material depends on its ability to reacquire the p ...
within a regulatory framework derived by
natural selection Natural selection is the differential survival and reproduction of individuals due to differences in phenotype. It is a key mechanism of evolution, the change in the heritable traits characteristic of a population over generations. Cha ...
amongst
species In biology, a species is the basic unit of classification and a taxonomic rank of an organism, as well as a unit of biodiversity. A species is often defined as the largest group of organisms in which any two individuals of the appropriate s ...
, where one being's harmful waste becomes low energy food for members of another guild. This research on the
Redfield ratio The Redfield ratio or Redfield stoichiometry is the consistent atomic ratio of carbon, nitrogen and phosphorus found in marine phytoplankton and throughout the deep oceans. The term is named for American oceanographer Alfred C. Redfield who in 19 ...
of nitrogen to phosphorus shows that local biotic processes can regulate global systems (See Keit
Downing
& Peter Zvirinsky, ''The Simulated Evolution of Biochemical Guilds: Reconciling Gaia Theory with Natural Selection'').


Original 1983 simulation synopsis

At the beginning of the simulation, the sun's rays are weak and Daisyworld is too cold to support any life. Its surface is barren, and gray. As the luminosity of the sun's rays increases, germination of black daisies becomes possible. Because black daisies absorb more of the sun's
radiant energy Radiant may refer to: Computers, software, and video games * Radiant (software), a content management system * GtkRadiant, a level editor created by id Software for their games * Radiant AI, a technology developed by Bethesda Softworks for '' ...
, they are able to increase their individual temperatures to healthy levels on the still cool surface of Daisyworld. As a result, they thrive and the population soon grows large enough to increase the average surface temperature of Daisyworld. As the surface heats up, it becomes more habitable for white daisies, whose competing population grows to rival the black daisy population. As the two populations reach equilibrium, so too does the surface temperature of Daisyworld, which settles on a value most comfortable for both populations. In this first phase of the simulation we see that black daisies have warmed Daisyworld so that it is habitable over a wider range of solar luminosity than would have been possible on a barren, gray planet. This allowed growth of the white daisy population, and the two populations of daisies are now working together to regulate the surface temperature. The second phase of the simulation documents what happens as the sun's luminosity continues to increase, heating the surface of Daisyworld beyond a comfortable range for the daisies. This temperature increase causes white daisies, who are better able to stay cool because of their high
albedo Albedo (; ) is the measure of the diffuse reflection of solar radiation out of the total solar radiation and measured on a scale from 0, corresponding to a black body that absorbs all incident radiation, to 1, corresponding to a body that refl ...
or ability to reflect sunlight, to gain a selective advantage over the black daisies. White daisies begin replacing black daisies, which has a cooling effect on Daisyworld. The result is that Daisyworld's surface temperature remains habitable - in fact almost constant - even as the luminosity of the sun continues to increase. In the third phase of the simulation, the sun's rays have grown so powerful that soon even the white daisies can no longer survive. At a certain luminosity their population crashes, and the barren, gray surface of Daisyworld, no longer able to reflect the sun's rays, rapidly heats up. At this point in the simulation solar luminosity is programmed to decline, retracing its original path to its initial value. Even as it declines to levels that previously supported vast populations of daisies in the third phase, no daisies are able to grow because the surface of barren, gray Daisyworld is still far too hot. Eventually, the sun's rays decrease in power to a more comfortable level which allows white daisies to grow, who begin cooling the planet.


Relevance to Earth

Because Daisyworld is so simplistic, having for example, no atmosphere, no animals, only one species of plant life, and only the most basic population growth and death models, it should not be directly compared to Earth. This was stated very clearly by the original authors. Even so, it provided a number of useful predictions of how Earth's
biosphere The biosphere (from Greek βίος ''bíos'' "life" and σφαῖρα ''sphaira'' "sphere"), also known as the ecosphere (from Greek οἶκος ''oîkos'' "environment" and σφαῖρα), is the worldwide sum of all ecosystems. It can also ...
may respond to, for example, human interference. Later adaptations of Daisyworld (discussed below), which added many layers of complexity, still showed the same basic trends of the original model. One prediction of the simulation is that the biosphere works to regulate the
climate Climate is the long-term weather pattern in an area, typically averaged over 30 years. More rigorously, it is the mean and variability of meteorological variables over a time spanning from months to millions of years. Some of the meteorologi ...
, making it
habitable Habitability refers to the adequacy of an environment for human living. Where housing is concerned, there are generally local ordinances which define habitability. If a residence complies with those laws it is said to be habitable. In extreme e ...
over a wide range of solar luminosity. Many examples of these regulatory systems have been found on Earth.


Modifications to the original simulation

Daisyworld was designed to refute the idea that there was something inherently mystical about the Gaia hypothesis that Earth's surface displays homeostatic and homeorhetic properties similar to those of a living organism. Specifically, thermoregulation was addressed. The Gaia hypothesis had attracted a substantial amount of criticism from scientists such as Richard Dawkins, who argued that planet-level thermoregulation was impossible without planetary natural selection, which might involve evidence of dead planets that did not thermoregulate. Dr. W. Ford Doolittle rejected the notion of planetary regulation because it seemed to require a "secret consensus" among organisms, thus some sort of inexplicable purpose on a planetary scale. Incidentally, neither of these neoDarwinians made a close examination of the wide-ranging evidence presented in Lovelock's books that was suggestive of planetary regulation, dismissing the theory based on what they saw as its incompatibility with the latest views on the processes by which evolution works. Lovelock's model countered the criticism that some "secret consensus" would be required for planetary regulation by showing how in this model thermoregulation of the planet, beneficial to the two species, arises naturally. Later criticism of Daisyworld itself centers on the fact that although it is often used as an analogy for Earth, the original simulation leaves out many important details of the true Earth system. For example, the system requires an ad-hoc death rate (γ) to sustain homeostasis, and it does not take into account the difference between species-level phenomena and individual level phenomena. Detractors of the simulation believed inclusion of these details would cause it to become unstable, and therefore, false. Many of these issues are addressed in a 2001 paper by Timothy Lenton and James Lovelock, which shows that inclusion of these factors actually improves Daisyworld's ability to regulate its climate.


Biodiversity and stability of ecosystems

The importance of the large number of species in an ecosystem, led to two sets of views about the role played by
biodiversity Biodiversity or biological diversity is the variety and variability of life on Earth. Biodiversity is a measure of variation at the genetic (''genetic variability''), species (''species diversity''), and ecosystem (''ecosystem diversity'') l ...
in the stability of ecosystems in Gaia theory. In one school of thought labelled the "species redundancy" hypothesis, proposed by Australian ecologist Brian Walker, most species are seen as having little contribution overall in the stability, comparable to the passengers in an aeroplane who play little role in its successful flight. The hypothesis leads to the conclusion that only a few key species are necessary for a healthy ecosystem. The "rivet-popper" hypothesis put forth by
Paul R. Ehrlich Paul Ralph Ehrlich (born May 29, 1932) is an American biologist known for his warnings about the consequences of population growth and limited resources. He is the Bing Professor Emeritus of Population Studies of the Department of Biology of St ...
and his wife
Anne H. Ehrlich Anne Howland Ehrlich (born Anne Fitzhugh Howland; November 17, 1933) is an American senior research scientist emeritus in conservation biology in the Department of Biology at Stanford University and co-author of more than thirty books on overpopul ...
compares each species forming part of an ecosystem with a rivet on the aeroplane (represented by the ecosystem). The progressive loss of species mirrors the progressive loss of rivets from the plane, weakening it till it is no longer sustainable and crashes. Later extensions of the Daisyworld simulation which included rabbits,
fox Foxes are small to medium-sized, omnivorous mammals belonging to several genera of the family Canidae. They have a flattened skull, upright, triangular ears, a pointed, slightly upturned snout, and a long bushy tail (or ''brush''). Twelve sp ...
es and other species, led to a surprising finding that the larger the number of species, the greater the improving effects on the entire planet (i.e., the temperature regulation was improved). It also showed that the system was robust and stable even when perturbed. Daisyworld simulations where environmental changes were stable gradually became less diverse over time; in contrast gentle perturbations led to bursts of species richness. These findings lent support to the idea that biodiversity is valuable. This finding was supported by a 1994 study of the factors species composition, dynamics and diversity in successional and native grasslands in Minnesota by
David Tilman George David Tilman (born Titman; July 22, 1949), ForMemRS, is an American ecologist. He is Regents Professor and McKnight Presidential Chair in Ecology at the University of Minnesota, as well as an instructor in Conservation Biology; Ecology, ...
and John A. Downing which concluded that "primary productivity in more diverse plant communities is more resistant to, and recovers more fully from, a major drought". They go on to add "Our results support the diversity stability hypothesis but not the alternative hypothesis that most species are functionally redundant".


See also

* Gaia hypothesis *
Gaia philosophy Gaia philosophy (named after Gaia, Greek goddess of the Earth) is a broadly inclusive term for related concepts that living organisms on a planet will affect the nature of their environment in order to make the environment more suitable for li ...
*
SimEarth ''SimEarth'' is a life simulation game, life simulation video game, the second designed by Will Wright (game designer), Will Wright and published in 1990 by Maxis. In ''SimEarth'', the player controls the development of a planet. English scientis ...
, a video game partially based on the Daisyworld simulation


References


Further reading

*


External links


Online DaisyWorld simulator, with many options (HTML5/Javascript)
Java Applet and explanation of Daisyworld with evolution
A Unix/X11 simulation of Daisyworld.

Modeling the Gaia Hypothesis: DaisyWorld
A test applet of a basic Daisyworld model using a 2D cellular automata. * Card, O.S., ''Xenocide'' (science fiction novel, sequel to Ender's Game and Speaker for the Dead, Tor, Aug 1991)
A NetLogo version of the Daisyworld model
{{Computer modeling Climate modeling Ecological experiments Homeostasis Articles containing video clips