HOME

TheInfoList



OR:

Desorption atmospheric pressure photoionization (DAPPI) is an
ambient ionization Ambient ionization is a form of ionization in which ions are formed in an ion source outside the mass spectrometer without sample preparation or separation. Ions can be formed by extraction into charged electrospray droplets, thermally desorbed a ...
technique for
mass spectrometry Mass spectrometry (MS) is an analytical technique that is used to measure the mass-to-charge ratio of ions. The results are presented as a ''mass spectrum'', a plot of intensity as a function of the mass-to-charge ratio. Mass spectrometry is use ...
that uses hot solvent vapor for desorption in conjunction with
photoionization Photoionization is the physical process in which an ion is formed from the interaction of a photon with an atom or molecule. Cross section Not every interaction between a photon and an atom, or molecule, will result in photoionization. The prob ...
. Ambient Ionization techniques allow for direct analysis of samples without pretreatment. The direct analysis technique, such as DAPPI, eliminates the extraction steps seen in most nontraditional samples. DAPPI can be used to analyze bulkier samples, such as, tablets, powders, resins, plants, and tissues. The first step of this technique utilizes a jet of hot solvent vapor. The hot jet thermally desorbs the sample from a surface. The vaporized sample is then
ionized Ionization, or Ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule ...
by the vacuum ultraviolet light and consequently sampled into a mass spectrometer. DAPPI can detect a range of both polar and non-polar compounds, but is most sensitive when analyzing neutral or non-polar compounds. This technique also offers a selective and soft ionization for highly conjugated compounds.


History

The history of desorption atmospheric pressure photoionization is relatively new, but can be traced back through developments of ambient ionization techniques dating back to the 1970s. DAPPI is a combination of popular techniques, such as, atmospheric pressure photoionziation (APPI) and surface desorption techniques. The photoionization techniques were first developed in the late 1970s and began being used in atmospheric pressure experiments in the mid 1980s. Early developments in the desorption of open surface and free matrix experiments were first reported in literature in 1999 in an experiment using desorption/ionization on silicon (DIOS). DAPPI replaced techniques such as desorption electrospray ionization (DESI) and direct analysis in real time (DART). This generation of techniques are all recent developments seen in the 21st century. DESI was discovered in 2004 at Purdue University, while DART was discovered in 2005 by Laramee and Cody. DAPPI was developed soon after in 2007 at the University of Helsinki, Finland. The development of DAPPI widened the range of detection for nonpolar compounds and added a new dimension of thermal desorption of direct analysis samples.


Principle of operation

The first operation to occur during desorption atmospheric pressure photoionization is desorption. Desorption of the sample is initiated by a hot jet of solvent vapor that is targeted onto the sample by a nebulizer microchip. The nebulizer microchip is a glass device bonded together by pyrex wafers with flow channels embedded from a nozzle at the edge of the chip. The microchip is heated to 250-350^\circC in order to vaporize the entering solvent and create dopant molecules. Dopant molecules are added to help facilitate the ionization of the sample. Some of the common solvents include:
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
,
toluene Toluene (), also known as toluol (), is a substituted aromatic hydrocarbon. It is a colorless, water-insoluble liquid with the smell associated with paint thinners. It is a mono-substituted benzene derivative, consisting of a methyl group (CH3) at ...
,
acetone Acetone (2-propanone or dimethyl ketone), is an organic compound with the formula . It is the simplest and smallest ketone (). It is a colorless, highly volatile and flammable liquid with a characteristic pungent odour. Acetone is miscib ...
, and
anisole Anisole, or methoxybenzene, is an organic compound with the formula CH3OC6H5. It is a colorless liquid with a smell reminiscent of anise seed, and in fact many of its derivatives are found in natural and artificial fragrances. The compound is ...
. The desorption process can occur by two mechanisms: thermal desorption or
momentum transfer In particle physics, wave mechanics and optics, momentum transfer is the amount of momentum that one particle gives to another particle. It is also called the scattering vector as it describes the transfer of wavevector in wave mechanics. In the s ...
/liquid spray. Thermal desorption uses heat to volatilize the sample and increase the surface temperature of the substrate. As the substrate's surface temperature is increased, the higher the sensitivity of the instrument. While studying the substrate temperature, it was seen that the solvent did not have a noticeable effect on the final temperature or heat rate of the substrate. Momentum transfer or liquid spray desoprtion is based on the solvent interaction with the sample, causing the release of specific ions. The momentum transfer is propagated by the collision of the solvent with the sample along with the transfer of ions with the sample. The transfer of positive ions, such as protons and charge transfers, are seen with the solvents: toluene and anisole. Toluene goes through a charge exchange mechanism with the sample, while acetone promotes a proton transfer mechanism with the sample. A beam of 10 eV photons that are given off by a UV lamp is directed at the newly desorbed molecules, as well as the dopant molecules. Photoionization then occurs, which knocks out the molecule's electron and produces an ion. This technique alone is not highly efficient for different varieties of molecules, particularly those that are not easily protonated or deprotonated. In order to completely ionize samples, dopant molecules must help. The gaseous solvent can also undergo photoionization and act as an intermediate for ionization of the sample molecules. Once dopant ions are formed, proton transfer can occur with the sample, creating more sample ions. The ions are then sent to the mass analyzer for analysis.


Ionization mechanisms

The main desorption mechanism in DAPPI is thermal desorption due to rapid heating of the surface. Therefore, DAPPI only works well for surfaces of low thermal conductivity. The ionization mechanism depends on the
analyte An analyte, component (in clinical chemistry), or chemical species is a substance or chemical constituent that is of interest in an analytical procedure. The purest substances are referred to as analytes, such as 24 karat gold, NaCl, water, etc. ...
and
solvent A solvent (s) (from the Latin '' solvō'', "loosen, untie, solve") is a substance that dissolves a solute, resulting in a solution. A solvent is usually a liquid but can also be a solid, a gas, or a supercritical fluid. Water is a solvent for ...
used. For example, the following analyte (M) ions may be formed: + Hsup>+, - Hsup>−, M+•, M−•.


Types of component geometries


Reflection geometry

Considered the normal or conventional geometry of DAPPI, this mode is ideal for solid samples that do not need any former preparation. The microchip is parallel to the MS inlet. The microchip heater is aimed to hit the samples at 45^\circ. The UV lamp is directly above the sample and it releases photons to interact with the desorbed molecules that are formed. The conventional method generally uses a higher heating power and gas flow rate for the nebulizer gas, while also increasing the amount of dopant used during the technique. These increases can cause higher background noise, analyte interference, substrate impurities, and more ion reactions from excess dopant ions.


Transmission geometry

This mode is specialized for analyzing liquid samples, with a metal or polymer mesh replacing the sample plate in reflection geometry. The mesh is oriented 180^\circ from the nebulizer microchip and the mass spec inlet, with the lamp directing photons to the area where the mesh releases newly desorbed molecules. The analyte is thermally desorbed as both the dopant vapor and nebulizer gas are directed through the mesh. It has been seen that steel mesh with low density and narrow strands produces better signal intensities. This type of mesh allows for larger openings in the surface and quicker heating of strands. Transmission mode uses a lower microchip heating power which eliminates some of the issues seen with the reflection geometry above, including low signal noise. This method can also improve the S/N ratio of smaller non-polar compounds.


Instrument Coupling


Separation techniques

Thin layer chromatography (TLC) is a simple separation technique that can be coupled with DAPPI-MS to identify lipids. Some of the lipids that were seen to be separated and ionized include: cholesterol, triacylglycerols, 1,2-diol diesters, wax esters, hydrocarbons, and cholesterol esters. TLC is normally coupled with instruments in vacuum or atmospheric pressure, but vacuum pressure gives poor sensitivity for more volatile compounds and has minimal area in the vacuum chambers. DAPPI was used for its ability to ionize neutral and non-polar compounds, and was seen to be a fast and efficient method for lipid detection as it was coupled with both NP-TLC and HPTLC plates.
Laser desorption A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The fir ...
is normally used in the presence of a matrix, such as matrix assisted laser desorption ionization (MALDI), but research has combined techniques of laser desoprtion in atmospheric pressure conditions to produce a method that does not use a matrix or discharge. This method is able to help with smaller compounds, and generates both positive and negative ions for detection. A transmission geometry is taken as the beam and spray are guided at a 180^\circangle into the coupled MS. Studies have shown the detection of organic compounds such as:
farnesene The term farnesene refers to a set of six closely related chemical compounds which all are sesquiterpenes. α-Farnesene and β-farnesene are isomers, differing by the location of one double bond. α-Farnesene is 3,7,11-trimethyl-1,3,6,10-dodecat ...
,
squalene Squalene is an organic compound. It is a triterpenoid with the formula C30H50. It is a colourless oil, although impure samples appear yellow. It was originally obtained from shark liver oil (hence its name, as ''Squalus'' is a genus of sharks). A ...
, tetradecahydroanthracene, 5-alpha cholestane,
perylene Perylene or perilene is a polycyclic aromatic hydrocarbon with the chemical formula C20H12, occurring as a brown solid. It or its derivatives may be carcinogenic, and it is considered to be a hazardous pollutant. In cell membrane cytochemistry, ...
,
benzoperylene Benzo 'ghi''erylene is a polycyclic aromatic hydrocarbon with the chemical formula C22H12. Occurrence and safety Benzo 'ghi''erylene occurs naturally in crude oil and coal tar. It is a product of incomplete combustion and is found in tobacco ...
,
coronene Coronene (also known as superbenzene and cyclobenzene) is a polycyclic aromatic hydrocarbon (PAH) comprising seven peri-fused benzene rings. Its chemical formula is . It is a yellow material that dissolves in common solvents including benzene, tol ...
, tetradecylprene, dodecyl sulfide, benzodiphenylene sulfide, dibenzosuberone,
carbazole Carbazole is an aromatic heterocyclic organic compound. It has a tricyclic structure, consisting of two six-membered benzene rings fused on either side of a five-membered nitrogen-containing ring. The compound's structure is based on the indole str ...
, and elipticine. This method was also seen to be coupled with the mass spectroscopy technique, FTICR, to detect shale oils and some smaller nitrogen containing aromatics.


Mass spectrometry

Fourier transform ion cyclotron resonance (FTICR) is a technique that is normally coupled with electrospray ionization (ESI), DESI, or DART, which allows for the detection of polar compounds. DAPPI allows for a broader range of polarities to be detected, and a range of molecular weights. Without separation or sample preparation, DAPPI is able to thermally desorb compounds such as oak biochars. The study did cite an issue with DAPPI. If the sample is not homogeneous, then the neutral ions will ionize only the surface, which does not provide an accurate detection for the substance. The scanning of the FTICR allows for the detection of complex compounds with high resolution, which leads to the ability to analyze elemental composition.


Applications

DAPPI can analyze both
polar Polar may refer to: Geography Polar may refer to: * Geographical pole, either of two fixed points on the surface of a rotating body or planet, at 90 degrees from the equator, based on the axis around which a body rotates * Polar climate, the c ...
(e.g.
verapamil Verapamil, sold under various trade names, is a calcium channel blocker medication used for the treatment of high blood pressure, angina (chest pain from not enough blood flow to the heart), and supraventricular tachycardia. It may also be used ...
) and
nonpolar In chemistry, polarity is a separation of electric charge leading to a molecule or its chemical groups having an electric dipole moment, with a negatively charged end and a positively charged end. Polar molecules must contain one or more polar ...
(e.g.
anthracene Anthracene is a solid polycyclic aromatic hydrocarbon (PAH) of formula C14H10, consisting of three fused benzene rings. It is a component of coal tar. Anthracene is used in the Economic production, production of the red dye alizarin and other dyes ...
) compounds. This technique has an upper detection limit of 600 Da. Compared to desorption electrostray ionization (DESI), DAPPI is less likely to be contaminated by biological matrices. DAPPI was also seen to be more sensitive and contain less background noise than popular techniques such as direct analysis in real time (DART). Performance of DAPPI has also been demonstrated on direct analysis of illicit drugs. Other applications include lipid detection and drug analysis sampling. Lipids can be detected through a coupling procedure with orbitrap mass spectroscopy. DAPPI has also been known to couple with liquid chromotography and gas chromotography mass spectroscopy for the analysis of drugs and aerosol compounds. Studies have also shown where DAPPI has been used to find harmful organic compounds in the environment and in food, such as
polycyclic aromatic hydrocarbon A polycyclic aromatic hydrocarbon (PAH) is a class of organic compounds that is composed of multiple aromatic rings. The simplest representative is naphthalene, having two aromatic rings and the three-ring compounds anthracene and phenanthrene. ...
s (PAH) and pesticides.


See also

*
Orbitrap In mass spectrometry, Orbitrap is an ion trap mass analyzer consisting of an outer barrel-like electrode and a coaxial inner spindle-like electrode that traps ions in an orbital motion around the spindle. The image current from the trapped ions is ...
*
Atmospheric pressure chemical ionization Atmospheric pressure chemical ionization (APCI) is an ionization method used in mass spectrometry which utilizes gas-phase ion-molecule reactions at atmospheric pressure (105 Pa), commonly coupled with high-performance liquid chromatography (HPLC ...
* Desorption atmospheric pressure chemical ionization


References

{{Mass spectrometry Mass spectrometry