HOME

TheInfoList



OR:

In
mechanics Mechanics (from Ancient Greek: μηχανική, ''mēkhanikḗ'', "of machines") is the area of mathematics and physics concerned with the relationships between force, matter, and motion among physical objects. Forces applied to objec ...
, compression is the application of balanced inward ("pushing")
force In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a ...
s to different points on a material or
structure A structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Material structures include man-made objects such as buildings and machines and natural objects such a ...
, that is, forces with no net sum or
torque In physics and mechanics, torque is the rotational equivalent of linear force. It is also referred to as the moment of force (also abbreviated to moment). It represents the capability of a force to produce change in the rotational motion of th ...
directed so as to reduce its size in one or more directions.Ferdinand Pierre Beer, Elwood Russell Johnston, John T. DeWolf (1992), "Mechanics of Materials". (Book) McGraw-Hill Professional, It is contrasted with tension or traction, the application of balanced outward ("pulling") forces; and with
shearing Sheep shearing is the process by which the woollen fleece of a sheep is cut off. The person who removes the sheep's wool is called a '' shearer''. Typically each adult sheep is shorn once each year (a sheep may be said to have been "shorn" o ...
forces, directed so as to displace layers of the material parallel to each other. The compressive strength of materials and structures is an important engineering consideration. In uniaxial compression, the forces are directed along one direction only, so that they act towards decreasing the object's length along that direction. The compressive forces may also be applied in multiple directions; for example inwards along the edges of a plate or all over the side surface of a
cylinder A cylinder (from ) has traditionally been a three-dimensional solid, one of the most basic of curvilinear geometric shapes. In elementary geometry, it is considered a prism with a circle as its base. A cylinder may also be defined as an ...
, so as to reduce its
area Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while '' surface area'' refers to the area of an op ...
(biaxial compression), or inwards over the entire surface of a body, so as to reduce its
volume Volume is a measure of occupied three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). ...
. Technically, a material is under a state of compression, at some specific point and along a specific direction x, if the
normal component In mathematics, given a vector at a point on a curve, that vector can be decomposed uniquely as a sum of two vectors, one tangent to the curve, called the tangential component of the vector, and another one perpendicular to the curve, called the n ...
of the stress vector across a surface with normal direction x is directed opposite to x. If the stress vector itself is opposite to x, the material is said to be under normal compression or pure compressive stress along x. In a
solid Solid is one of the four fundamental states of matter (the others being liquid, gas, and plasma). The molecules in a solid are closely packed together and contain the least amount of kinetic energy. A solid is characterized by structur ...
, the amount of compression generally depends on the direction x, and the material may be under compression along some directions but under traction along others. If the stress vector is purely compressive and has the same magnitude for all directions, the material is said to be under isotropic or hydrostatic compression at that point. This is the only type of static compression that liquids and gases can bear. In a mechanical wave which is
longitudinal Longitudinal is a geometric term of location which may refer to: * Longitude ** Line of longitude, also called a meridian * Longitudinal engine, an internal combustion engine in which the crankshaft is oriented along the long axis of the vehicle, ...
, the medium is displaced in the wave's direction, resulting in areas of compression and rarefaction.


Effects

When put under compression (or any other type of stress), every material will suffer some deformation, even if imperceptible, that causes the average relative positions of its atoms and molecules to change. The deformation may be permanent, or may be reversed when the compression forces disappear. In the latter case, the deformation gives rise to reaction forces that oppose the compression forces, and may eventually balance them.Fung, Y. C. (1977). A First Course in Continuum Mechanics (2nd ed.). Prentice-Hall, Inc. ISBN 978-0-13-318311-5. Liquids and gases cannot bear steady uniaxial or biaxial compression, they will deform promptly and permanently and will not offer any permanent reaction force. However they can bear isotropic compression, and may be compressed in other ways momentarily, for instance in a sound wave. Every ordinary material will contract in volume when put under isotropic compression, contract in cross-section area when put under uniform biaxial compression, and contract in length when put into uniaxial compression. The deformation may not be uniform and may not be aligned with the compression forces. What happens in the directions where there is no compression depends on the material. Most materials will expand in those directions, but some special materials will remain unchanged or even contract. In general, the relation between the stress applied to a material and the resulting deformation is a central topic of continuum mechanics.


Uses

Compression of solids has many implications in materials science,
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which ...
and structural engineering, for compression yields noticeable amounts of stress and tension. By inducing compression, mechanical properties such as compressive strength or modulus of elasticity, can be measured. Compression machines range from very small table top systems to ones with over 53 MN capacity. Gases are often stored and shipped in highly compressed form, to save space. Slightly compressed air or other gases are also used to fill
balloon A balloon is a flexible bag that can be inflated with a gas, such as helium, hydrogen, nitrous oxide, oxygen, and air. For special tasks, balloons can be filled with smoke, liquid water, granular media (e.g. sand, flour or rice), or lig ...
s, rubber boats, and other
inflatable structure An inflatable is an object that can be inflated with a gas, usually with air, but hydrogen, helium and nitrogen are also used. One of several advantages of an inflatable is that it can be stored in a small space when not inflated, since infla ...
s. Compressed liquids are used in hydraulic equipment and in fracking.


In engines


Internal combustion engines

In
internal combustion engine An internal combustion engine (ICE or IC engine) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal co ...
s the explosive mixture gets compressed before it is ignited; the compression improves the efficiency of the engine. In the Otto cycle, for instance, the second stroke of the piston effects the compression of the charge which has been drawn into the cylinder by the first forward stroke.J.Heywood. Internal Combustion Engine Fundamentals 2E. McGraw-Hill Education. (2018). ISBN 9781260116113 rl=https://books.google.com/books?id=OmJUDwAAQBAJ/ref>


Steam engines

The term is applied to the arrangement by which the exhaust valve of a
steam engine A steam engine is a heat engine that performs mechanical work using steam as its working fluid. The steam engine uses the force produced by steam pressure to push a piston back and forth inside a cylinder. This pushing force can be ...
is made to close, shutting a portion of the exhaust steam in the
cylinder A cylinder (from ) has traditionally been a three-dimensional solid, one of the most basic of curvilinear geometric shapes. In elementary geometry, it is considered a prism with a circle as its base. A cylinder may also be defined as an ...
, before the stroke of the piston is quite complete. This steam being compressed as the stroke is completed, a cushion is formed against which the piston does work while its velocity is being rapidly reduced, and thus the stresses in the mechanism due to the inertia of the reciprocating parts are lessened. This compression, moreover, obviates the shock which would otherwise be caused by the admission of the fresh steam for the return stroke.


See also

* Buckling * Container compression test *
Compression member Compression members are structural elements that are pushed together or carry a load; more technically, they are subjected only to axial compressive forces. That is, the loads are applied on the longitudinal axis through the centroid of the memb ...
* Compressive strength * Longitudinal wave * P-wave * Rarefaction * Strength of materials *
Resal effect The Resal effect is a structural engineering term which refers to the way the compressive force acting on a flange of a tapered beam reduces the effective shear force In solid mechanics, shearing forces are unaligned forces acting on one p ...
* Plane strain compression test


References

{{reflist Continuum mechanics Mechanical engineering