HOME

TheInfoList



OR:

Color (
American English American English, sometimes called United States English or U.S. English, is the set of varieties of the English language native to the United States. English is the most widely spoken language in the United States and in most circumstances ...
) or colour (
British English British English (BrE, en-GB, or BE) is, according to Oxford Dictionaries, "English as used in Great Britain, as distinct from that used elsewhere". More narrowly, it can refer specifically to the English language in England, or, more broadl ...
) is the visual perceptual
property Property is a system of rights that gives people legal control of valuable things, and also refers to the valuable things themselves. Depending on the nature of the property, an owner of property may have the right to consume, alter, share, r ...
deriving from the
spectrum of light The electromagnetic spectrum is the range of frequencies (the spectrum) of electromagnetic radiation and their respective wavelengths and photon energies. The electromagnetic spectrum covers electromagnetic waves with frequencies ranging fro ...
interacting with the photoreceptor cells of the eyes. Color categories and physical specifications of color are associated with objects or materials based on their physical properties such as light absorption, reflection, or emission spectra. By defining a
color space A color space is a specific organization of colors. In combination with color profiling supported by various physical devices, it supports reproducible representations of colorwhether such representation entails an analog or a digital represen ...
, colors can be identified numerically by their coordinates. Because perception of color stems from the varying
spectral sensitivity Spectral sensitivity is the relative efficiency of detection, of light or other signal, as a function of the frequency or wavelength of the signal. In visual neuroscience, spectral sensitivity is used to describe the different characterist ...
of different types of cone cells in the
retina The retina (from la, rete "net") is the innermost, light-sensitive layer of tissue of the eye of most vertebrates and some molluscs. The optics of the eye create a focused two-dimensional image of the visual world on the retina, which the ...
to different parts of the spectrum, colors may be defined and quantified by the degree to which they stimulate these cells. These physical or
physiological Physiology (; ) is the scientific study of functions and mechanisms in a living system. As a sub-discipline of biology, physiology focuses on how organisms, organ systems, individual organs, cells, and biomolecules carry out the chemica ...
quantifications of color, however, do not fully explain the psychophysical perception of color appearance.
Color science Color science is the scientific study of color including lighting and optics; measurement of light and color; the physiology, psychophysics, and modeling of color vision; and color reproduction. History Organizations * International Com ...
includes the perception of color by the eye and brain, the origin of color in materials, color theory in art, and the
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which ...
of
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visib ...
in the visible range (i.e. ''
light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 t ...
'').


Physics of color

Electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visib ...
is characterized by its
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tr ...
(or
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
) and its intensity. When the wavelength is within the
visible spectrum The visible spectrum is the portion of the electromagnetic spectrum that is visible to the human eye. Electromagnetic radiation in this range of wavelengths is called '' visible light'' or simply light. A typical human eye will respond to ...
(the range of wavelengths humans can perceive, approximately from 390  nm to 700 nm), it is known as "visible
light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 t ...
". Most light sources emit light at many different wavelengths; a source's ''spectrum'' is a distribution giving its intensity at each wavelength. Although the spectrum of light arriving at the eye from a given direction determines the color
sensation Sensation (psychology) refers to the processing of the senses by the sensory system. Sensation or sensations may also refer to: In arts and entertainment In literature * Sensation (fiction), a fiction writing mode * Sensation novel, a Briti ...
in that direction, there are many more possible spectral combinations than color sensations. In fact, one may formally define a color as a class of spectra that give rise to the same color sensation, although such classes would vary widely among different species, and to a lesser extent among individuals within the same species. In each such class, the members are called '' metamers'' of the color in question. This effect can be visualized by comparing the light sources' spectral power distributions and the resulting colors.


Spectral colors

The familiar colors of the rainbow in the
spectrum A spectrum (plural ''spectra'' or ''spectrums'') is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of colors ...
—named using the
Latin Latin (, or , ) is a classical language belonging to the Italic languages, Italic branch of the Indo-European languages. Latin was originally a dialect spoken in the lower Tiber area (then known as Latium) around present-day Rome, but through ...
word for ''appearance'' or ''apparition'' by
Isaac Newton Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, Theology, theologian, and author (described in his time as a "natural philosophy, natural philosopher"), widely ...
in 1671—include all those colors that can be produced by visible
light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 t ...
of a single wavelength only, the ''pure spectral'' or ''monochromatic'' colors. The table at right shows approximate frequencies (in terahertz) and wavelengths (in nanometers) for spectral colors in the visible range. Spectral colors have 100% purity, and are fully saturated. A complex mixture of spectral colors can be used to describe any color, which is the definition of a light power spectrum. The color table should not be interpreted as a definitive list; the spectral colors form a continuous spectrum, and how it is divided into distinct colors linguistically is a matter of culture and historical contingency. Despite the ubiquitous ROYGBIV mnemonic used to remember the spectral colors in english, the inclusion or exclusion of colors in this table is contentious, with disagreement often focused on
indigo Indigo is a deep color close to the color wheel blue (a primary color in the RGB color space), as well as to some variants of ultramarine, based on the ancient dye of the same name. The word "indigo" comes from the Latin word ''indicum'', ...
and cyan. Even if the subset of color terms is agreed, their wavelength ranges and borders between them may not be. The ''intensity'' of a spectral color, relative to the context in which it is viewed, may alter its perception considerably according to the Bezold–Brücke shift; for example, a low-intensity orange-yellow is
brown Brown is a color. It can be considered a composite color, but it is mainly a darker shade of orange. In the CMYK color model used in printing or painting, brown is usually made by combining the colors orange and black. In the RGB color model ...
, and a low-intensity yellow-green is
olive green Olive is a dark yellowish-green color, like that of unripe or green olives. As a color word in the English language, it appears in late Middle English. Shaded toward gray, it becomes olive drab. Variations Olivine Olivine is the typic ...
.


Color of objects

The color of an object as perceived by an observer is not an intrinsic quality of that object, but depends on several factors: # the physics of the object (which wavelengths of light are selectively absorbed, reflected, transmitted, or emitted) # the color of the light shining on the object (
color cast A colour cast is a tint of a particular colour, usually unwanted, that evenly affects a photographic image in whole or in part. Certain types of light can cause film and digital cameras to render a colour cast. Illuminating a subject with light s ...
of the illuminant) # the angles between observer, object and illuminant (applicable to structural color) # the physics of light in its environment (how the atmosphere may affect the light through Rayleigh scattering or
dispersion Dispersion may refer to: Economics and finance *Dispersion (finance), a measure for the statistical distribution of portfolio returns *Price dispersion, a variation in prices across sellers of the same item *Wage dispersion, the amount of variatio ...
, for example) # relative velocity between object and observer ( red shift; mostly applicable to astronomy) # the characteristics of the perceiving eye (the number and
spectral sensitivity Spectral sensitivity is the relative efficiency of detection, of light or other signal, as a function of the frequency or wavelength of the signal. In visual neuroscience, spectral sensitivity is used to describe the different characterist ...
of cone classes and dimensionality of color vision) # higher order processes in the brain that affect the color, such as color constancy Some generalizations of the physics can be drawn, neglecting perceptual effects for now: *Light arriving at an
opaque Opacity or opaque may refer to: * Impediments to (especially, visible) light: ** Opacities, absorption coefficients ** Opacity (optics), property or degree of blocking the transmission of light * Metaphors derived from literal optics: ** In lingui ...
surface is either reflected " specularly" (that is, in the manner of a mirror),
scattered Scattered may refer to: Music * ''Scattered'' (album), a 2010 album by The Handsome Family * "Scattered" (The Kinks song), 1993 * "Scattered", a song by Ace Young * "Scattered", a song by Lauren Jauregui * "Scattered", a song by Green Day from ' ...
(that is, reflected with diffuse scattering), or absorbed—or some combination of these. *Opaque objects that do not reflect specularly (which tend to have rough surfaces) have their color determined by which wavelengths of light they scatter strongly (with the light that is not scattered being absorbed). If objects scatter all wavelengths with roughly equal strength, they appear white. If they absorb all wavelengths, they appear black. *Opaque objects that specularly reflect the light of different wavelengths with different efficiencies look like mirrors tinted with colors determined by those differences. An object that reflects some fraction of impinging light and absorbs the rest may look black but also be faintly reflective; examples are black objects coated with layers of enamel or lacquer. *Objects that transmit light are either ''translucent'' (scattering the transmitted light) or ''transparent'' (not scattering the transmitted light). If they also absorb (or reflect) light of various wavelengths differentially, they appear tinted with a color determined by the nature of that absorption (or that reflectance). *Objects may emit light that they generate from having excited electrons, rather than merely reflecting or transmitting light. The electrons may be excited due to elevated temperature (''
incandescence Incandescence is the emission of electromagnetic radiation (including visible light) from a hot body as a result of its high temperature. The term derives from the Latin verb ''incandescere,'' to glow white. A common use of incandescence is ...
''), as a result of chemical reactions ('' chemiluminescence''), after absorbing light of other frequencies ("
fluorescence Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, tha ...
" or "
phosphorescence Phosphorescence is a type of photoluminescence related to fluorescence. When exposed to light (radiation) of a shorter wavelength, a phosphorescent substance will glow, absorbing the light and reemitting it at a longer wavelength. Unlike fluo ...
") or from electrical contacts as in
light-emitting diode A light-emitting diode (LED) is a semiconductor Electronics, device that Light#Light sources, emits light when Electric current, current flows through it. Electrons in the semiconductor recombine with electron holes, releasing energy i ...
s, or other light sources. To summarize, the color of an object is a complex result of its surface properties, its transmission properties, and its emission properties, all of which contribute to the mix of wavelengths in the light leaving the surface of the object. The perceived color is then further conditioned by the nature of the ambient illumination, and by the color properties of other objects nearby, and via other characteristics of the perceiving eye and brain.


Perception


Development of theories of color vision

Although
Aristotle Aristotle (; grc-gre, Ἀριστοτέλης ''Aristotélēs'', ; 384–322 BC) was a Greek philosopher and polymath during the Classical period in Ancient Greece. Taught by Plato, he was the founder of the Peripatetic school of ...
and other ancient scientists had already written on the nature of light and color vision, it was not until Newton that light was identified as the source of the color sensation. In 1810,
Goethe Johann Wolfgang von Goethe (28 August 1749 – 22 March 1832) was a German poet, playwright, novelist, scientist, statesman, theatre director, and critic. His works include plays, poetry, literature, and aesthetic criticism, as well as tr ...
published his comprehensive '' Theory of Colors'' in which he provided a rational description of colour experience, which 'tells us how it originates, not what it is'. (Schopenhauer) In 1801 Thomas Young proposed his trichromatic theory, based on the observation that any color could be matched with a combination of three lights. This theory was later refined by
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and scientist responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and ligh ...
and
Hermann von Helmholtz Hermann Ludwig Ferdinand von Helmholtz (31 August 1821 – 8 September 1894) was a German physicist and physician who made significant contributions in several scientific fields, particularly hydrodynamic stability. The Helmholtz Associat ...
. As Helmholtz puts it, "the principles of Newton's law of mixture were experimentally confirmed by Maxwell in 1856. Young's theory of color sensations, like so much else that this marvelous investigator achieved in advance of his time, remained unnoticed until Maxwell directed attention to it." At the same time as Helmholtz, Ewald Hering developed the
opponent process The opponent process is a color theory that states that the human visual system interprets information about color by processing signals from photoreceptor cells in an antagonistic manner. The opponent-process theory suggests that there are thr ...
theory of color, noting that color blindness and afterimages typically come in opponent pairs (red-green, blue-orange, yellow-violet, and black-white). Ultimately these two theories were synthesized in 1957 by Hurvich and Jameson, who showed that retinal processing corresponds to the trichromatic theory, while processing at the level of the lateral geniculate nucleus corresponds to the opponent theory. In 1931, an international group of experts known as the ''Commission internationale de l'éclairage'' ( CIE) developed a mathematical color model, which mapped out the space of observable colors and assigned a set of three numbers to each.


Color in the eye

The ability of the
human eye The human eye is a sensory organ, part of the sensory nervous system, that reacts to visible light and allows humans to use visual information for various purposes including seeing things, keeping balance, and maintaining circadian rhythm. ...
to distinguish colors is based upon the varying sensitivity of different cells in the
retina The retina (from la, rete "net") is the innermost, light-sensitive layer of tissue of the eye of most vertebrates and some molluscs. The optics of the eye create a focused two-dimensional image of the visual world on the retina, which the ...
to light of different
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tr ...
s. Humans are trichromatic—the retina contains three types of color receptor cells, or cones. One type, relatively distinct from the other two, is most responsive to light that is perceived as blue or blue-violet, with wavelengths around 450 nm; cones of this type are sometimes called ''short-wavelength cones'' or ''S cones'' (or misleadingly, ''blue cones''). The other two types are closely related genetically and chemically: ''middle-wavelength cones'', ''M cones'', or ''green cones'' are most sensitive to light perceived as green, with wavelengths around 540 nm, while the ''long-wavelength cones'', ''L cones'', or ''red cones'', are most sensitive to light that is perceived as greenish yellow, with wavelengths around 570 nm. Light, no matter how complex its composition of wavelengths, is reduced to three color components by the eye. Each cone type adheres to the principle of univariance, which is that each cone's output is determined by the amount of light that falls on it over all wavelengths. For each location in the visual field, the three types of cones yield three signals based on the extent to which each is stimulated. These amounts of stimulation are sometimes called ''tristimulus values''. The response curve as a function of wavelength varies for each type of cone. Because the curves overlap, some tristimulus values do not occur for any incoming light combination. For example, it is not possible to stimulate ''only'' the mid-wavelength (so-called "green") cones; the other cones will inevitably be stimulated to some degree at the same time. The set of all possible tristimulus values determines the human ''color space''. It has been estimated that humans can distinguish roughly 10 million different colors. The other type of light-sensitive cell in the eye, the rod, has a different response curve. In normal situations, when light is bright enough to strongly stimulate the cones, rods play virtually no role in vision at all. On the other hand, in dim light, the cones are understimulated leaving only the signal from the rods, resulting in a colorless response. (Furthermore, the rods are barely sensitive to light in the "red" range.) In certain conditions of intermediate illumination, the rod response and a weak cone response can together result in color discriminations not accounted for by cone responses alone. These effects, combined, are summarized also in the Kruithof curve, which describes the change of color perception and pleasingness of light as a function of temperature and intensity.


Color in the brain

While the mechanisms of color vision at the level of the
retina The retina (from la, rete "net") is the innermost, light-sensitive layer of tissue of the eye of most vertebrates and some molluscs. The optics of the eye create a focused two-dimensional image of the visual world on the retina, which the ...
are well-described in terms of tristimulus values, color processing after that point is organized differently. A dominant theory of color vision proposes that color information is transmitted out of the eye by three
opponent process The opponent process is a color theory that states that the human visual system interprets information about color by processing signals from photoreceptor cells in an antagonistic manner. The opponent-process theory suggests that there are thr ...
es, or opponent channels, each constructed from the raw output of the cones: a red–green channel, a blue–yellow channel, and a black–white "luminance" channel. This theory has been supported by neurobiology, and accounts for the structure of our subjective color experience. Specifically, it explains why humans cannot perceive a "reddish green" or "yellowish blue", and it predicts the color wheel: it is the collection of colors for which at least one of the two color channels measures a value at one of its extremes. The exact nature of color perception beyond the processing already described, and indeed the status of color as a feature of the perceived world or rather as a feature of our ''perception'' of the world—a type of qualia—is a matter of complex and continuing philosophical dispute.


Nonstandard color perception


Color vision deficiency

A color vision deficiency causes an individual to perceive a smaller
gamut In color reproduction, including computer graphics and photography, the gamut, or color gamut , is a certain ''complete subset'' of colors. The most common usage refers to the subset of colors which can be accurately represented in a given circ ...
of colors than the standard observer with normal color vision. The effect can be mild, having lower "color resolution" (i.e.
anomalous trichromacy Color blindness or color vision deficiency (CVD) is the decreased ability to see color or differences in color. It can impair tasks such as selecting ripe fruit, choosing clothing, and reading traffic lights. Color blindness may make some aca ...
), moderate, lacking an entire dimension or channel of color (e.g.
dichromacy Dichromacy (from Greek ''di'', meaning "two" and ''chromo'', meaning "color") is the state of having two types of functioning photoreceptors, called cone cells, in the eyes. Organisms with dichromacy are called dichromats. Dichromats requir ...
), or complete, lacking all color perception (i.e. monochromacy). Most forms of color blindness derive from one or many of the three classes of cone cells either being missing, having a shifted
spectral sensitivity Spectral sensitivity is the relative efficiency of detection, of light or other signal, as a function of the frequency or wavelength of the signal. In visual neuroscience, spectral sensitivity is used to describe the different characterist ...
or having lower responsiveness to incoming light. In addition, cerebral achromatopsia is caused by neural anomalies in those parts of the brain where visual processing takes place. Some colors that appear distinct to an individual with normal color vision will appear metameric to the color blind. The most common form of color blindness is congenital red-green color blindness, affecting ~8% of males. Individuals with the strongest form of this condition (
dichromacy Dichromacy (from Greek ''di'', meaning "two" and ''chromo'', meaning "color") is the state of having two types of functioning photoreceptors, called cone cells, in the eyes. Organisms with dichromacy are called dichromats. Dichromats requir ...
) will experience blue and purple, green and yellow, teal and gray as colors of confusion, i.e. metamers.


Tetrachromacy

Outside of humans, which are mostly ''trichromatic'' (having three types of cones), most mammals are dichromatic, possessing only two cones. However, outside of mammals, most vertebrate are '' tetrachromatic'', having four types of cones, and includes most,
bird Birds are a group of warm-blooded vertebrates constituting the class Aves (), characterised by feathers, toothless beaked jaws, the laying of hard-shelled eggs, a high metabolic rate, a four-chambered heart, and a strong yet lightweig ...
s,
reptile Reptiles, as most commonly defined are the animals in the class Reptilia ( ), a paraphyletic grouping comprising all sauropsids except birds. Living reptiles comprise turtles, crocodilians, squamates ( lizards and snakes) and rhynchocephalia ...
s, amphibians and
bony fish Osteichthyes (), popularly referred to as the bony fish, is a diverse superclass of fish that have skeletons primarily composed of bone tissue. They can be contrasted with the Chondrichthyes, which have skeletons primarily composed of cartil ...
. An extra dimension of color vision means these vertebrates can see two distinct colors that a normal human would view as metamers. Some invertebrates, such as the mantis shrimp, have an even higher number of cones (12) that could lead to a richer color
gamut In color reproduction, including computer graphics and photography, the gamut, or color gamut , is a certain ''complete subset'' of colors. The most common usage refers to the subset of colors which can be accurately represented in a given circ ...
than even imaginable by humans. The existence of human tetrachromats is a contentious notion. As many as half of all human females have 4 distinct cone classes, which could enable tetrachromacy. However, a distinction must be made between ''retinal (or weak) tetrachromats'', which express four cone classes in the retina, and ''functional (or strong) tetrachromats'', which are able to make the enhanced color discriminations expected of tetrachromats. In fact, there is only one peer-reviewed report of a functional tetrachromat. It is estimated that while the average person is able to see one million colors, someone with functional tetrachromacy could see a hundred million colors.


Synesthesia

In certain forms of
synesthesia Synesthesia (American English) or synaesthesia (British English) is a perceptual phenomenon in which stimulation of one sensory or cognitive pathway leads to involuntary experiences in a second sensory or cognitive pathway. People who re ...
, perceiving letters and numbers (
grapheme–color synesthesia Grapheme–color synesthesia or colored grapheme synesthesia is a form of synesthesia in which an individual's perception of numerals and letters is associated with the experience of colors. Like all forms of synesthesia, grapheme–color synesth ...
) or hearing sounds (
chromesthesia Chromesthesia or sound-to-color synesthesia is a type of synesthesia in which sound involuntarily evokes an experience of color, shape, and movement. Individuals with sound-color synesthesia are consciously aware of their synesthetic color assoc ...
) will evoke a perception of color. Behavioral and functional neuroimaging experiments have demonstrated that these color experiences lead to changes in behavioral tasks and lead to increased activation of brain regions involved in color perception, thus demonstrating their reality, and similarity to real color percepts, albeit evoked through a non-standard route. Synesthesia can occur genetically, with 4% of the population having variants associated with the condition. Synesthesia has also been known to occur with brain damage, drugs, and sensory deprivation. The philosopher Pythagoras experienced synesthesia and provided one of the first written accounts of the condition in approximately 550 BCE. He created mathematical equations for musical notes that could form part of a scale, such as an octave.


Afterimages

After exposure to strong light in their sensitivity range, photoreceptors of a given type become desensitized. For a few seconds after the light ceases, they will continue to signal less strongly than they otherwise would. Colors observed during that period will appear to lack the color component detected by the desensitized photoreceptors. This effect is responsible for the phenomenon of afterimages, in which the eye may continue to see a bright figure after looking away from it, but in a
complementary color Complementary colors are pairs of colors which, when combined or mixed, cancel each other out (lose hue) by producing a grayscale color like white or black. When placed next to each other, they create the strongest contrast for those t ...
. Afterimage effects have also been used by artists, including
Vincent van Gogh Vincent Willem van Gogh (; 30 March 185329 July 1890) was a Dutch Post-Impressionist painter who posthumously became one of the most famous and influential figures in Western art history. In a decade, he created about 2,100 artworks, inc ...
.


Color constancy

When an artist uses a limited color palette, the
human eye The human eye is a sensory organ, part of the sensory nervous system, that reacts to visible light and allows humans to use visual information for various purposes including seeing things, keeping balance, and maintaining circadian rhythm. ...
tends to compensate by seeing any gray or neutral color as the color which is missing from the color wheel. For example, in a limited palette consisting of red, yellow, black, and white, a mixture of yellow and black will appear as a variety of green, a mixture of red and black will appear as a variety of purple, and pure gray will appear bluish. The trichromatic theory is strictly true when the visual system is in a fixed state of adaptation. In reality, the visual system is constantly adapting to changes in the environment and compares the various colors in a scene to reduce the effects of the illumination. If a scene is illuminated with one light, and then with another, as long as the difference between the light sources stays within a reasonable range, the colors in the scene appear relatively constant to us. This was studied by
Edwin H. Land Edwin Herbert Land, ForMemRS, FRPS, Hon.MRI (May 7, 1909 – March 1, 1991) was an Russian-American scientist and inventor, best known as the co-founder of the Polaroid Corporation. He invented inexpensive filters for polarizing light, ...
in the 1970s and led to his retinex theory of color constancy. Both phenomena are readily explained and mathematically modeled with modern theories of chromatic adaptation and color appearance (e.g. CIECAM02, iCAM).M.D. Fairchild
Color Appearance Models
, 2nd Ed., Wiley, Chichester (2005).
There is no need to dismiss the trichromatic theory of vision, but rather it can be enhanced with an understanding of how the visual system adapts to changes in the viewing environment.


Color naming

Colors vary in several different ways, including hue (shades of red, orange,
yellow Yellow is the color between green and orange on the spectrum of light. It is evoked by light with a dominant wavelength of roughly 575585 nm. It is a primary color in subtractive color systems, used in painting or color printing. In th ...
,
green Green is the color between cyan and yellow on the visible spectrum. It is evoked by light which has a dominant wavelength of roughly 495570 nm. In subtractive color systems, used in painting and color printing, it is created by a combin ...
,
blue Blue is one of the three primary colours in the RYB colour model (traditional colour theory), as well as in the RGB (additive) colour model. It lies between violet and cyan on the spectrum of visible light. The eye perceives blue when ...
, and violet), saturation,
brightness Brightness is an attribute of visual perception in which a source appears to be radiating or reflecting light. In other words, brightness is the perception elicited by the luminance of a visual target. The perception is not linear to luminance, ...
, and gloss. Some color words are derived from the name of an object of that color, such as " orange" or "
salmon Salmon () is the common name for several commercially important species of euryhaline ray-finned fish from the family Salmonidae, which are native to tributaries of the North Atlantic (genus '' Salmo'') and North Pacific (genus '' Onco ...
", while others are abstract, like "red". In the 1969 study ''
Basic Color Terms ''Basic Color Terms: Their Universality and Evolution'' (1969; ) is a book by Brent Berlin and Paul Kay. Berlin and Kay's work proposed that the basic color terms in a culture, such as black, brown, or red, are predictable by the number of col ...
: Their Universality and Evolution'',
Brent Berlin Overton Brent Berlin (born 1936) is an American anthropologist, most noted for his work with linguist Paul Kay on color, and his ethnobiological research among the Maya of Chiapas, Mexico. He received his Ph.D. from Stanford University in 196 ...
and
Paul Kay Paul Kay (born 1934 in New York) is an emeritus professor of linguistics at the University of California, Berkeley, United States. He joined the University in 1966 as a member of the Department of Anthropology, transferring to the Department ...
describe a pattern in naming "basic" colors (like "red" but not "red-orange" or "dark red" or "blood red", which are "shades" of red). All languages that have two "basic" color names distinguish dark/cool colors from bright/warm colors. The next colors to be distinguished are usually red and then yellow or green. All languages with six "basic" colors include black, white, red, green, blue, and yellow. The pattern holds up to a set of twelve: black, gray, white, pink, red, orange, yellow, green, blue, purple, brown, and azure (distinct from blue in Russian and Italian, but not English).


In culture

Colors, their meanings and associations can play a major role in works of art, including literature.


Associations

Individual colors have a variety of cultural associations such as national colors (in general described in individual color articles and color symbolism). The field of
color psychology Color psychology is the study of hues as a determinant of human behavior. Color influences perceptions that are not obvious, such as the taste of food. Colors have qualities that can cause certain emotions in people. How color influences individ ...
attempts to identify the effects of color on human emotion and activity. Chromotherapy is a form of alternative medicine attributed to various Eastern traditions. Colors have different associations in different countries and cultures. Different colors have been demonstrated to have effects on cognition. For example, researchers at the University of Linz in Austria demonstrated that the color red significantly decreases cognitive functioning in men. The combination of the colors red and yellow together can induce hunger, which has been capitalized on by a number of chain restaurants. Color plays a role in memory development too. A photograph that is in black and white is slightly less memorable than one in color. Studies also show that wearing bright colors makes you more memorable to people you meet.


Color reproduction

Color reproduction is the science of creating colors for the human eye that faithfully represent the desired color. It focuses on how to construct a spectrum of wavelengths that will best evoke a certain color in an observer. Most colors are not
spectral colors A spectral color is a color that is evoked by ''monochromatic light'', i.e. either a single wavelength of light in the visible spectrum, or by a relatively narrow band of wavelengths (e.g. lasers). Every wavelength of visible light is percei ...
, meaning they are mixtures of various wavelengths of light. However, these non-spectral colors are often described by their dominant wavelength, which identifies the single wavelength of light that produces a sensation most similar to the non-spectral color. Dominant wavelength is roughly akin to hue. There are many color perceptions that by definition cannot be pure spectral colors due to desaturation or because they are
purple Purple is any of a variety of colors with hue between red and blue. In the RGB color model used in computer and television screens, purples are produced by mixing red and blue light. In the RYB color model historically used by painters ...
s (mixtures of red and violet light, from opposite ends of the spectrum). Some examples of necessarily non-spectral colors are the achromatic colors (black, gray, and white) and colors such as
pink Pink is the color of a namesake flower that is a pale tint of red. It was first used as a color name in the late 17th century. According to surveys in Europe and the United States, pink is the color most often associated with charm, politeness, ...
, tan, and magenta. Two different light spectra that have the same effect on the three color receptors in the
human eye The human eye is a sensory organ, part of the sensory nervous system, that reacts to visible light and allows humans to use visual information for various purposes including seeing things, keeping balance, and maintaining circadian rhythm. ...
will be perceived as the same color. They are metamers of that color. This is exemplified by the white light emitted by fluorescent lamps, which typically has a spectrum of a few narrow bands, while daylight has a continuous spectrum. The human eye cannot tell the difference between such light spectra just by looking into the light source, although the color rendering index of each light source may affect the color of objects illuminated by these metameric light sources. Similarly, most human color perceptions can be generated by a mixture of three colors called ''primaries''. This is used to reproduce color scenes in photography, printing, television, and other media. There are a number of methods or
color space A color space is a specific organization of colors. In combination with color profiling supported by various physical devices, it supports reproducible representations of colorwhether such representation entails an analog or a digital represen ...
s for specifying a color in terms of three particular
primary colors A set of primary colors or primary colours (see spelling differences) consists of colorants or colored lights that can be mixed in varying amounts to produce a gamut of colors. This is the essential method used to create the perception of a b ...
. Each method has its advantages and disadvantages depending on the particular application. No mixture of colors, however, can produce a response truly identical to that of a spectral color, although one can get close, especially for the longer wavelengths, where the CIE 1931 color space chromaticity diagram has a nearly straight edge. For example, mixing green light (530 nm) and blue light (460 nm) produces cyan light that is slightly desaturated, because response of the red color receptor would be greater to the green and blue light in the mixture than it would be to a pure cyan light at 485 nm that has the same intensity as the mixture of blue and green. Because of this, and because the ''primaries'' in
color printing Color printing or colour printing is the reproduction of an image or text in color (as opposed to simpler black and white or monochrome printing). Any natural scene or color photograph can be optically and physiologically dissected into thre ...
systems generally are not pure themselves, the colors reproduced are never perfectly saturated spectral colors, and so spectral colors cannot be matched exactly. However, natural scenes rarely contain fully saturated colors, thus such scenes can usually be approximated well by these systems. The range of colors that can be reproduced with a given color reproduction system is called the
gamut In color reproduction, including computer graphics and photography, the gamut, or color gamut , is a certain ''complete subset'' of colors. The most common usage refers to the subset of colors which can be accurately represented in a given circ ...
. The CIE chromaticity diagram can be used to describe the gamut. Another problem with color reproduction systems is connected with the initial measurement of color, or colorimetry. The characteristics of the color sensors in measurement devices (e.g. cameras, scanners) are often very far from the characteristics of the receptors in the human eye. A color reproduction system "tuned" to a human with normal color vision may give very inaccurate results for other observers, according to color vision deviations to the
standard observer The CIE 1931 color spaces are the first defined quantitative links between distributions of wavelengths in the electromagnetic visible spectrum, and physiologically perceived colors in human color vision. The mathematical relationships that defi ...
. The different color response of different devices can be problematic if not properly managed. For color information stored and transferred in digital form, color management techniques, such as those based on ICC profiles, can help to avoid distortions of the reproduced colors. Color management does not circumvent the gamut limitations of particular output devices, but can assist in finding good mapping of input colors into the gamut that can be reproduced.


Additive coloring

Additive color is light created by mixing together
light Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 t ...
of two or more different colors. Red,
green Green is the color between cyan and yellow on the visible spectrum. It is evoked by light which has a dominant wavelength of roughly 495570 nm. In subtractive color systems, used in painting and color printing, it is created by a combin ...
, and
blue Blue is one of the three primary colours in the RYB colour model (traditional colour theory), as well as in the RGB (additive) colour model. It lies between violet and cyan on the spectrum of visible light. The eye perceives blue when ...
are the additive primary colors normally used in additive color systems such as projectors and computer terminals.


Subtractive coloring

Subtractive coloring uses dyes, inks, pigments, or filters to absorb some wavelengths of light and not others. The color that a surface displays comes from the parts of the visible spectrum that are not absorbed and therefore remain visible. Without pigments or dye, fabric fibers, paint base and paper are usually made of particles that scatter white light (all colors) well in all directions. When a pigment or ink is added, wavelengths are absorbed or "subtracted" from white light, so light of another color reaches the eye. If the light is not a pure white source (the case of nearly all forms of artificial lighting), the resulting spectrum will appear a slightly different color. Red paint, viewed under
blue Blue is one of the three primary colours in the RYB colour model (traditional colour theory), as well as in the RGB (additive) colour model. It lies between violet and cyan on the spectrum of visible light. The eye perceives blue when ...
light, may appear
black Black is a color which results from the absence or complete absorption of visible light. It is an achromatic color, without hue, like white and grey. It is often used symbolically or figuratively to represent darkness. Black and white ha ...
. Red paint is red because it scatters only the red components of the spectrum. If red paint is illuminated by blue light, it will be absorbed by the red paint, creating the appearance of a black object.


Structural color

Structural colors are colors caused by interference effects rather than by pigments. Color effects are produced when a material is scored with fine parallel lines, formed of one or more parallel thin layers, or otherwise composed of microstructures on the scale of the color's
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tr ...
. If the microstructures are spaced randomly, light of shorter wavelengths will be scattered preferentially to produce Tyndall effect colors: the blue of the sky (Rayleigh scattering, caused by structures much smaller than the wavelength of light, in this case, air molecules), the luster of
opal Opal is a hydrated amorphous form of silica (SiO2·''n''H2O); its water content may range from 3 to 21% by weight, but is usually between 6 and 10%. Due to its amorphous property, it is classified as a mineraloid, unlike crystalline form ...
s, and the blue of human irises. If the microstructures are aligned in arrays, for example, the array of pits in a CD, they behave as a
diffraction grating In optics, a diffraction grating is an optical component with a periodic structure that diffracts light into several beams travelling in different directions (i.e., different diffraction angles). The emerging coloration is a form of structur ...
: the grating reflects different wavelengths in different directions due to interference phenomena, separating mixed "white" light into light of different wavelengths. If the structure is one or more thin layers then it will reflect some wavelengths and transmit others, depending on the layers' thickness. Structural color is studied in the field of
thin-film optics Thin-film optics is the branch of optics that deals with very thin structured layers of different materials. In order to exhibit thin-film optics, the thickness of the layers of material must be similar to the coherence length; for visible l ...
. The most ordered or the most changeable structural colors are iridescent. Structural color is responsible for the blues and greens of the feathers of many birds (the blue jay, for example), as well as certain butterfly wings and beetle shells. Variations in the pattern's spacing often give rise to an iridescent effect, as seen in
peacock Peafowl is a common name for three bird species in the genera '' Pavo'' and '' Afropavo'' within the tribe Pavonini of the family Phasianidae, the pheasants and their allies. Male peafowl are referred to as peacocks, and female peafowl are r ...
feathers, soap bubbles, films of oil, and mother of pearl, because the reflected color depends upon the viewing angle. Numerous scientists have carried out research in butterfly wings and beetle shells, including Isaac Newton and Robert Hooke. Since 1942, electron micrography has been used, advancing the development of products that exploit structural color, such as " photonic" cosmetics.


Additional terms

* Color wheel: an illustrative organization of color hues in a circle that shows relationships. * Colorfulness, chroma, purity, or saturation: how "intense" or "concentrated" a color is. Technical definitions distinguish between colorfulness, chroma, and saturation as distinct perceptual attributes and include purity as a physical quantity. These terms, and others related to light and color, are internationally agreed upon and published in the CIE Lighting Vocabulary. More readily available texts on colorimetry also define and explain these terms.R.S. Berns
Principles of Color Technology
, 3rd Ed., Wiley, New York (2001).
*
Dichromatism Dichromatism (or polychromatism) is a phenomenon where a material or solution's hue is dependent on both the concentration of the absorbing substance and the depth or thickness of the medium traversed. In most substances which are not dichromatic, ...
: a phenomenon where the hue is dependent on the concentration and thickness of the absorbing substance. * Hue: the color's direction from white, for example in a color wheel or chromaticity diagram. * Shade: a color made darker by adding black. * Tint: a color made lighter by adding white. *
Value Value or values may refer to: Ethics and social * Value (ethics) wherein said concept may be construed as treating actions themselves as abstract objects, associating value to them ** Values (Western philosophy) expands the notion of value beyo ...
, brightness, lightness, or luminosity: how light or dark a color is.


See also

* Chromophore *
Color analysis (art) Color analysis (American English; colour analysis in Commonwealth English), also known as personal color analysis (PCA), seasonal color analysis, or skin-tone matching, is a term often used within the cosmetics and fashion industry to describe ...
*
Color in Chinese culture Chinese culture attaches certain values to colors, like which colors are considered auspicious () or inauspicious (). The Chinese word for "color" is ''yánsè'' (). In Classical Chinese, the character ''sè'' () more accurately meant "color ...
*
Color mapping Color mapping is a function that maps (transforms) the colors of one (source) image to the colors of another (target) image. A color mapping may be referred to as the algorithm that results in the mapping function or the algorithm that transfor ...
*
Complementary color Complementary colors are pairs of colors which, when combined or mixed, cancel each other out (lose hue) by producing a grayscale color like white or black. When placed next to each other, they create the strongest contrast for those t ...
*
Impossible color Impossible colors are colors that do not appear in ordinary visual functioning. Different color theories suggest different hypothetical colors that humans are incapable of perceiving for one reason or another, and fictional colors are rou ...
* International Color Consortium * International Commission on Illumination * Lists of colors (compact version) *
Neutral color Neutral or neutrality may refer to: Mathematics and natural science Biology * Neutral organisms, in ecology, those that obey the unified neutral theory of biodiversity Chemistry and physics * Neutralization (chemistry), a chemical reaction i ...
*
Pearlescent coating Iridescence (also known as goniochromism) is the phenomenon of certain surfaces that appear to gradually change color as the angle of view or the angle of illumination changes. Examples of iridescence include soap bubbles, feathers, butterf ...
including Metal effect pigments *
Pseudocolor False color (or pseudo color) refers to a group of color rendering methods used to display images in color which were recorded in the visible or non-visible parts of the electromagnetic spectrum. A false-color image is an image that depicts ...
* Primary, secondary and tertiary colors


References


External links


ColorLab
MATLAB toolbox for color science computation and accurate color reproduction (by Jesus Malo and Maria Jose Luque, Universitat de Valencia). It includes CIE standard tristimulus colorimetry and transformations to a number of non-linear color appearance models (CIE Lab, CIE CAM, etc.).

Buenos Aires University * * *
Robert Ridgway Robert Ridgway (July 2, 1850 – March 25, 1929) was an American ornithologist specializing in systematics. He was appointed in 1880 by Spencer Fullerton Baird, secretary of the Smithsonian Institution, to be the first full-time curator of bi ...
'
''A Nomenclature of Colors'' (1886)
an
''Color Standards and Color Nomenclature'' (1912)
��text-searchable digital facsimiles at Linda Hall Library *
Albert Henry Munsell Albert Henry Munsell (January 6, 1858 – June 28, 1918) was an American painter, teacher of art, and the inventor of the Munsell color system. He was born in Boston, Massachusetts, attended and served on the faculty of Massachusetts Normal Ar ...
'
''A Color Notation''
(1907) at Project Gutenberg
AIC
International Colour Association
The Effect of Color , OFF BOOK
Documentary produced by Off Book
Study of the history of colors
{{Authority control Image processing Qualia Vision