HOME

TheInfoList



OR:

''Clementine'' (officially called the Deep Space Program Science Experiment (DSPSE)) was a joint space project between the Ballistic Missile Defense Organization (previously the
Strategic Defense Initiative Organization The Strategic Defense Initiative (SDI), derisively nicknamed the "''Star Wars'' program", was a proposed missile defense system intended to protect the United States from attack by ballistic strategic nuclear weapons (intercontinental ballistic ...
) and
NASA The National Aeronautics and Space Administration (NASA ) is an independent agency of the US federal government responsible for the civil space program, aeronautics research, and space research. NASA was established in 1958, succeedin ...
, launched on January 25, 1994. Its objective was to test sensors and spacecraft components in long-term exposure to space and to make scientific observations of both the
Moon The Moon is Earth's only natural satellite. It is the fifth largest satellite in the Solar System and the largest and most massive relative to its parent planet, with a diameter about one-quarter that of Earth (comparable to the width of ...
and the
near-Earth asteroid A near-Earth object (NEO) is any small Solar System body whose orbit brings it into proximity with Earth. By convention, a Solar System body is a NEO if its closest approach to the Sun ( perihelion) is less than 1.3 astronomical units (AU) ...
1620 Geographos 1620 Geographos (), provisional designation , is a highly elongated, stony asteroid, near-Earth object and potentially hazardous asteroid of the Apollo group, with a mean-diameter of approximately . It was discovered on 14 September 1951, by as ...
.


Results

Observation of the asteroid was not made due to a malfunction in the spacecraft. The lunar observations included imaging at various wavelengths in the visible as well as in
ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation ...
and
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of Light, visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from ...
, laser ranging
altimetry An altimeter or an altitude meter is an instrument used to measure the altitude of an object above a fixed level. The measurement of altitude is called altimetry, which is related to the term bathymetry, the measurement of depth under water. The m ...
,
gravimetry Gravimetry is the measurement of the strength of a gravitational field. Gravimetry may be used when either the magnitude of a gravitational field or the properties of matter responsible for its creation are of interest. Units of measurement G ...
, and charged particle measurements. These observations were for the purposes of obtaining multi-spectral imaging of the entire lunar surface, assessing the surface mineralogy of the Moon, obtaining altimetry from 60N to 60S
latitude In geography, latitude is a coordinate that specifies the north– south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from –90° at the south pole to 90° at the north ...
, and obtaining gravity data for the near side. There were also plans to image and determine the size, shape, rotational characteristics, surface properties, and cratering statistics of Geographos.


Instruments

''Clementine'' carried seven distinct experiments on board: a UV/Visible Camera, a Near Infrared Camera, a Long Wavelength Infrared Camera, a High Resolution Camera, two
Star Tracker A star tracker is an optical device that measures the positions of stars using photocells or a camera. As the positions of many stars have been measured by astronomers to a high degree of accuracy, a star tracker on a satellite or spacecraft may ...
Cameras, a Laser Altimeter, and a Charged Particle Telescope. The S-band transponder was used for communications, tracking, and the gravimetry experiment. The project was named Clementine after the song " Oh My Darling, Clementine" as the spacecraft would be "lost and gone forever" following its mission.


Spacecraft design

The spacecraft was an octagonal prism 1.88 m high and 1.14 m across with two
solar panel A solar cell panel, solar electric panel, photo-voltaic (PV) module, PV panel or solar panel is an assembly of photovoltaic solar cells mounted in a (usually rectangular) frame, and a neatly organised collection of PV panels is called a photo ...
s protruding on opposite sides parallel to the axis of the prism. A high-gain fixed dish antenna was at one end of the prism, and the 489 N thruster at the other end. The sensor openings were all located together on one of the eight panels, 90 degrees from the solar panels, and protected by a single sensor cover. The
spacecraft propulsion Spacecraft propulsion is any method used to accelerate spacecraft and artificial satellites. In-space propulsion exclusively deals with propulsion systems used in the vacuum of space and should not be confused with space launch or atmospheric ...
system consisted of a
monopropellant Monopropellants are propellants consisting of chemicals that release energy through exothermic chemical decomposition. The molecular bond energy of the monopropellant is released usually through use of a catalyst. This can be contrasted with bipro ...
hydrazine Hydrazine is an inorganic compound with the chemical formula . It is a simple pnictogen hydride, and is a colourless flammable liquid with an ammonia-like odour. Hydrazine is highly toxic unless handled in solution as, for example, hydrazine ...
system for
attitude control Attitude control is the process of controlling the orientation of an aerospace vehicle with respect to an inertial frame of reference or another entity such as the celestial sphere, certain fields, and nearby objects, etc. Controlling vehicle ...
and a bipropellant nitrogen tetroxide and monomethyl hydrazine system for the maneuvers in space. The bipropellant system had a total
Delta-v Delta-''v'' (more known as " change in velocity"), symbolized as ∆''v'' and pronounced ''delta-vee'', as used in spacecraft flight dynamics, is a measure of the impulse per unit of spacecraft mass that is needed to perform a maneuver such a ...
capability of about 1,900 m/s with about 550 m/s required for lunar insertion and 540 m/s for lunar departure. Attitude control was achieved with 12 small attitude control jets, two star trackers, and two inertial measurement units. The spacecraft was three-axis stabilized in lunar orbit via
reaction wheel A reaction wheel (RW) is used primarily by spacecraft for three-axis attitude control, and does not require rockets or external applicators of torque. They provide a high pointing accuracy, and are particularly useful when the spacecraft must be ...
s with a precision of 0.05 deg in control and 0.03 deg in knowledge. Power was provided by gimbaled, single axis, GaAs/Ge solar panels which charged a 15 A·h, 47 W·h/kg Nihau ( Ni-H) common pressure vessel battery. Spacecraft data processing was performed using a MIL-STD-1750A computer (1.7 MIPS) for savemode, attitude control, and housekeeping operations, a
RISC In computer engineering, a reduced instruction set computer (RISC) is a computer designed to simplify the individual instructions given to the computer to accomplish tasks. Compared to the instructions given to a complex instruction set comp ...
32-bit processor (18 MIPS) for image processing and autonomous operations, and an image compression system provided by the French Space Agency
CNES The (CNES; French: ''Centre national d'études spatiales'') is the French government space agency (administratively, a "public administration with industrial and commercial purpose"). Its headquarters are located in central Paris and it is und ...
. A data handling unit sequenced the cameras, operated the image compression system, and directed the data flow. Data was stored in a 2 Gbit dynamic solid state data recorder.


Mission

On January 25, 1994, ''Clementine'' was launched from Space Launch Complex 4 West at
Vandenberg Air Force Base Vandenberg may refer to: * Vandenberg (surname), including a list of people with the name * USNS ''General Hoyt S. Vandenberg'' (T-AGM-10), transport ship in the United States Navy, sank as an artificial reef in Key West, Florida * Vandenberg Sp ...
, California, using a
Titan II The Titan II was an intercontinental ballistic missile (ICBM) developed by the Glenn L. Martin Company from the earlier Titan I missile. Titan II was originally designed and used as an ICBM, but was later adapted as a medium-lift space l ...
launch vehicle. The mission had two phases. After two Earth flybys, lunar insertion was achieved approximately one month after launch. Lunar mapping took place over approximately two months, in two parts. The first part consisted of a five-hour elliptical
polar orbit A polar orbit is one in which a satellite passes above or nearly above both poles of the body being orbited (usually a planet such as the Earth, but possibly another body such as the Moon or Sun) on each revolution. It has an inclination of about ...
with a
periapsis An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. For example, the apsides of the Earth are called the aphelion and perihelion. General description There are two apsides in any elli ...
of about 400 km at 13 degrees south latitude and an
apoapsis An apsis (; ) is the farthest or nearest point in the orbit of a planetary body about its primary body. For example, the apsides of the Earth are called the aphelion and perihelion. General description There are two apsides in any elli ...
of 8300 km. Each orbit consisted of an 80-minute lunar mapping phase near periapsis and 139 minutes of downlink at apoapsis. After one month of mapping the orbit was rotated to a periapsis at 13 degrees north latitude, where it remained for one more month. This allowed global imaging and altimetry coverage from 60° south to 60° north, over a total of 300 orbits. After a Moon to Earth transfer and two more Earth flybys, the spacecraft was to head for 1620 Geographos, arriving three months later for a flyby, with a nominal approach closer than 100 km. Unfortunately, on May 7, 1994, after the first Earth transfer orbit, a malfunction aboard the craft caused one of the attitude control thrusters to fire for 11 minutes, using up its fuel supply and causing ''Clementine'' to spin at about 80 rpm
see NASA Clementine Project Info
. Under these conditions, the asteroid flyby could not yield useful results, so the spacecraft was put into a
geocentric orbit A geocentric orbit or Earth orbit involves any object orbiting Earth, such as the Moon or artificial satellites. In 1997, NASA estimated there were approximately 2,465 artificial satellite payloads orbiting Earth and 6,216 pieces of space debri ...
passing through the Van Allen radiation belts to test the various components on board. The mission ended in June 1994 when the power level onboard dropped to a point where the
telemetry Telemetry is the in situ collection of measurements or other data at remote points and their automatic transmission to receiving equipment (telecommunication) for monitoring. The word is derived from the Greek roots ''tele'', "remote", an ...
from the spacecraft was no longer intelligible. However, "because the spacecraft was fortuitously in the correct attitude to power up again, ground controllers were able to briefly regain contact between 20 February and 10 May 1995." NASA announced on March 5, 1998, that data obtained from ''Clementine'' indicated that there is enough water in polar craters of the Moon to support a human colony and a
rocket A rocket (from it, rocchetto, , bobbin/spool) is a vehicle that uses jet propulsion to accelerate without using the surrounding air. A rocket engine produces thrust by reaction to exhaust expelled at high speed. Rocket engines work entir ...
fueling station (see Bistatic Radar Experiment).


Science instruments


Charged Particle Telescope (CPT)

The Charged Particle Telescope (CPT) on ''Clementine'' was designed to measure the flux and spectra of energetic protons (3–80  MeV) and electrons (25–500 keV). The primary goals of the investigation were to: (1) study the interaction of the Earth's magnetotail and interplanetary shocks with the Moon; (2) monitor the solar wind in regions far removed from other spacecraft as part of a multimission coordinated study; and, (3) measure the effects of incident particles on the operating ability of the spacecraft solar cells and other sensors. In order to meet the stringent limit on the mass of the instrument (<1 kg), it was implemented as a single element telescope. The telescope had a 10 degree half-angle field of view. The detector, a silicon surface-barrier type with an area of 100 mm2 and a thickness of 3 mm, was shielded so as to prevent protons below 30 MeV from reaching it from directions other than via the aperture. The aperture was covered by a very thin foil to prevent light impinging on the detector and generating noise. The signal from the detector was broken up into nine channels, the lowest six dedicated to electron detection and the highest three to protons and heavier ions.


Ultraviolet/Visible camera

The Ultraviolet/Visible camera (UV/Vis) was designed to study the surfaces of the Moon and the asteroid Geographos at five different wavelengths in the ultraviolet and visible spectrum. The Geographos rendezvous was canceled due to equipment malfunction. This experiment yielded information on the petrologic properties of the surface material on the Moon, as well as giving images useful for morphologic studies and cratering statistics. Most images were taken at low Sun angles, which is useful for petrologic studies but not for observing morphology. The sensor consisted of a
catadioptric telescope A catadioptric optical system is one where refraction and reflection are combined in an optical system, usually via lenses ( dioptrics) and curved mirrors ( catoptrics). Catadioptric combinations are used in focusing systems such as searchlights ...
with an aperture of 46 mm and fused silica lenses focused onto a coated Thompson CCD camera with a bandpass of 250–1000 nm and a six-position filter wheel. The wavelength response was limited on the short wavelength end by the transmission and optical blur of the lens, and on the long end by the CCD response. The CCD was a frame transfer device which allowed three gain states (150, 350, and 1000 electrons/bit). Integration times varied from 1–40 ms depending on gain state, solar illumination angle, and filter. The filter center wavelengths (and bandpass widths (FWHM)) were 415 nm (40 nm), 750 nm (10 nm), 900 nm (30 nm), 950 nm (30 nm), 1000 nm (30 nm), and a broad-band filter covering 400–950 nm. The field of view was 4.2 × 5.6 degrees, translating to a cross-track width of about 40 km at a nominal 400 km lunar altitude. The image array was 288 × 384 pixels. Pixel resolution varied from 100–325 m during a single orbit mapping run at the Moon. At Geographos the pixel resolution would have been 25 m at the 100 km closest approach, giving an image size about 7 × 10 km. The camera took twelve images in each 1.3 s image burst, which occurred 125 times over the 80-minute mapping span during each five-hour lunar orbit. the Moon's surface was covered completely during the two-month lunar mapping phase of the mission. The dynamic range was 15,000. The signal-to-noise ratio varied from 25–87 depending on the surface
albedo Albedo (; ) is the measure of the diffuse reflection of solar radiation out of the total solar radiation and measured on a scale from 0, corresponding to a black body that absorbs all incident radiation, to 1, corresponding to a body that refle ...
and phase angle, with a relative calibration of 1% and an absolute calibration of 15%.


Near-Infrared CCD Camera (NIR)

The ''Clementine'' Near-Infrared camera (NIR) was designed to study the surfaces of the Moon and the near-Earth asteroid 1620 Geographos at six different wavelengths in the near-infrared spectrum. This experiment yielded information on the petrology of the surface material on the Moon. The rendezvous with Geographos was canceled due to equipment malfunction. The camera consisted of a catadioptric lens which focused on a mechanically cooled (to a temperature of 70 K) Amber InSb CCD focal-plane array with a bandpass of 1100–2800 nm and a six-position filter wheel. The filter center wavelengths (and bandpass widths (FWHM)) were: 1100 nm (60 nm), 1250 nm (60 nm), 1500 nm (60 nm), 2000 nm (60 nm), 2600 nm (60 nm), and 2780 nm (120 nm). The aperture was 29 mm with a focal length of 96 mm. The field of view was 5.6 × 5.6 degrees, giving a cross-track width of about 40 km at a nominal 400 km lunar altitude. The Moon had complete mapping coverage during the two-month lunar phase of the mission. The image array is 256 × 256 pixels, and pixel resolution varied from 150–500 m during a single orbit mapping run at the Moon. (At Geographos the pixel resolution would have been 40 m at closest approach, giving an image size about 10 × 10 km.) The camera took twelve images in each 1.3 s image burst, which occurred 75 times over the 80 minute mapping span during each five hour lunar orbit. The dynamic range was 15,000. The
signal-to-noise ratio Signal-to-noise ratio (SNR or S/N) is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to the noise power, often expressed in de ...
varied from 11–97 depending on the surface albedo and phase angle, with a relative calibration of 1% and an absolute calibration of 30%. The gain varied from 0.5X to 36X.


Laser Image Detection and Ranging (LIDAR) System

The ''Clementine'' Laser Image Detection And Ranging (
LIDAR Lidar (, also LIDAR, or LiDAR; sometimes LADAR) is a method for determining ranges (variable distance) by targeting an object or a surface with a laser and measuring the time for the reflected light to return to the receiver. It can also be ...
) experiment was designed to measure the distance from the spacecraft to a point on the surface of the Moon. This will allow an altimetric map to be made, which can be used to constrain the morphology of large basins and other lunar features, study stress and strain and flexural properties of the lithosphere, and can be combined with gravity to study the density distribution in the crust. The experiment was also designed to measure distances to the surface of Geographos, but this phase of the mission was canceled due to a malfunction. The LIDAR system consisted of a 180 mJ, 1064 nm wavelength Nd-YAG (
Yttrium Yttrium is a chemical element with the symbol Y and atomic number 39. It is a silvery-metallic transition metal chemically similar to the lanthanides and has often been classified as a " rare-earth element". Yttrium is almost always found in co ...
-Aluminum-Garnet) laser transmitter which transmitted pulses to the lunar surface. The laser produced a pulse with a width less than 10 ns. At 1064 nm wavelength, the pulse had an energy of 171 mJ with a divergence less than 500 microrad. At 532 nm, it had a 9 mJ pulse with a 4 millirad divergence. The reflected pulse travelled through the High-Resolution Camera telescope, where it was split off by a dichroic filter to a silicon avalanche photodiode detector. The detector was a single 0.5 × 0.5 mm cell SiAPD receiver with a field of view of 0.057 square degrees. The laser had a mass of 1250 g, the receiver was housed in the 1120 g HIRES camera. The travel time of a pulse gave the range to the surface. The LIDAR memory could save up to six return detections per laser firing, with a threshold set for the best compromise between missed detections and false alarms. The returns were stored in 39.972 m range bins, equal to the resolution of the 14-bit clock counter. The LIDAR has a nominal range of 500 km, but altimetric data was gathered for altitudes up to 640 km, which allowed coverage from 60 degrees south to 60 degrees north by the end of the lunar phase of the mission. The vertical resolution is 40 m, and the horizontal spot resolution is about 100 m. The across track spacing of the measurements at the equator was about 40 km. One measurement was made each second over a 45-minute period during each orbit, giving an along track spacing of 1–2 km.


High-Resolution Camera (HIRES)

The ''Clementine'' High-Resolution Camera consisted of a telescope with an image intensifier and a frame-transfer CCD imager. The imaging system was designed to study selected portions of the surfaces of the Moon and the near-Earth asteroid 1620 Geographos, although the asteroid rendezvous was canceled due to a malfunction. This experiment allowed the detailed study of surface processes on the Moon and, combined with spectral data, allowed high-resolution compositional and geologic studies. The imager was an intensified Thompson CCD camera with a six position filter wheel. The set of filters consisted of a broad-band filter with a bandpass of 400 to 800 nm, four narrow-band filters with center wavelengths (and bandpass width (FWHM)) of 415 nm (40 nm), 560 nm (10 nm), 650 nm (10 nm), and 750 nm (20 nm), and 1 opaque cover to protect the image intensifier. The field of view was 0.3 x 0.4 degrees, translating to a width of about 2 km at a nominal lunar altitude of 400 km. The image array is 288 × 384 pixels, (pixel size of 23 × 23 micrometers) so the pixel resolution at the Moon was 7–20 m depending on the spacecraft altitude. (At Geographos the resolution would have been <5 m at closest approach.) The clear aperture was 131 mm and the focal length was 1250 mm. The nominal imaging rate was about 10 frames per second in individual image bursts covering all filters at the Moon. The high resolution and small field of view only allowed coverage of selected areas of the Moon, in the form of either long, narrow strips of a single color or shorter strips of up to four colors. The instrument has a signal to noise ratio of 13 to 41 depending on the albedo and phase angle, with a 1% relative calibration and a 20% absolute calibration, and a dynamic range of 2000. The telescope of the High-Resolution Camera was shared by the LIDAR instrument. The 1064 nm laser return was split to the LIDAR receiver (an avalanche photodiode detector) using a dichroic filter. Imagery from the HIRES can be viewed in
NASA World Wind NASA WorldWind is an open-source (released under the NOSA license and the Apache 2.0 license) virtual globe. According to the website (https://worldwind.arc.nasa.gov/), "WorldWind is an open source virtual globe API. WorldWind allow ...
software.


Bistatic Radar Experiment

The "
Bistatic Radar Bistatic radar is a radar system comprising a transmitter and receiver that are separated by a distance comparable to the expected target distance. Conversely, a conventional radar in which the transmitter and receiver are co-located is called ...
Experiment", improvised during the mission, was designed to look for evidence of lunar water at the Moon's poles. Radio signals from the ''Clementine'' probe's transmitter were directed towards the Moon's north and south polar regions and their reflections detected by
Deep Space Network The NASA Deep Space Network (DSN) is a worldwide network of American spacecraft communication ground segment facilities, located in the United States (California), Spain (Madrid), and Australia (Canberra), that supports NASA's interplanetary ...
receivers on Earth. Analysis of the magnitude and polarisation of the reflected signals suggested the presence of volatile ices, interpreted as including water ice, in the Moon's surface soils. A possible ice deposit equivalent to a sizeable lake was announced. However, later studies made using the Arecibo radio telescope showed similar reflection patterns even from areas not in permanent shadow (and in which such volatiles cannot persist), leading to suggestions that ''Clementine''s results had been misinterpreted and were probably due to other factors such as surface roughness.Ice on the Bone Dry Moon
Paul D. Spudis, December 1996


After the lunar mission

On May 7, 1994 (UTC) ''Clementine'' experienced a computer failure after it left Lunar orbit.
/ref> The failure caused it to use up its remaining propellant, spinning the spacecraft up to 80 rotations per minute. It was utilized in a geocentric orbit until the end of its mission, but the asteroid trip was aborted May 2.


Artifacts

The engineering model of the Clementine spacecraft hangs in the Air & Space Museum in Washington, DC.


References


External links


''Clementine'' Mission Profile
b
NASA's Solar System Exploration''Clementine'' Mission Overview
b
Naval Research LaboratoryClementine Mission OverviewNews photos from the U. S. Department of Defense


{{DEFAULTSORT:Clementine (Spacecraft) Missions to the Moon NASA space probes Spacecraft launched in 1994 Spacecraft that orbited the Moon Missions to near-Earth asteroids Derelict satellites orbiting Earth Space laser altimeters