HOME

TheInfoList



OR:

Cathodoluminescence is an
optical Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultravio ...
and electromagnetic phenomenon in which electrons impacting on a
luminescent Luminescence is spontaneous emission of light by a substance not resulting from heat; or "cold light". It is thus a form of cold-body radiation. It can be caused by chemical reactions, electrical energy, subatomic motions or stress on a crys ...
material such as a
phosphor A phosphor is a substance that exhibits the phenomenon of luminescence; it emits light when exposed to some type of radiant energy. The term is used both for fluorescent or phosphorescent substances which glow on exposure to ultraviolet o ...
, cause the emission of
photons A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they always ...
which may have wavelengths in the
visible spectrum The visible spectrum is the portion of the electromagnetic spectrum that is visible to the human eye. Electromagnetic radiation in this range of wavelengths is called '' visible light'' or simply light. A typical human eye will respond to wave ...
. A familiar example is the generation of light by an electron beam scanning the phosphor-coated inner surface of the screen of a
television Television, sometimes shortened to TV, is a telecommunication medium for transmitting moving images and sound. The term can refer to a television set, or the medium of television transmission. Television is a mass medium for advertising, ...
that uses a
cathode ray tube A cathode-ray tube (CRT) is a vacuum tube containing one or more electron guns, which emit electron beams that are manipulated to display images on a phosphorescent screen. The images may represent electrical waveforms ( oscilloscope), pic ...
. Cathodoluminescence is the inverse of the
photoelectric effect The photoelectric effect is the emission of electrons when electromagnetic radiation, such as light, hits a material. Electrons emitted in this manner are called photoelectrons. The phenomenon is studied in condensed matter physics, and solid ...
, in which electron emission is induced by irradiation with photons.


Origin

Luminescence Luminescence is spontaneous emission of light by a substance not resulting from heat; or "cold light". It is thus a form of cold-body radiation. It can be caused by chemical reactions, electrical energy, subatomic motions or stress on a cry ...
in a
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way. ...
results when an
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no ...
in the
conduction band In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in ...
recombines with a
hole A hole is an opening in or through a particular medium, usually a solid body. Holes occur through natural and artificial processes, and may be useful for various purposes, or may represent a problem needing to be addressed in many fields of en ...
in the valence band. The difference energy (band gap) of this transition can be emitted in form of a
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are Massless particle, massless ...
. The energy (color) of the photon, and the probability that a photon and not a
phonon In physics, a phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phonon is an excited state in the quantum mechani ...
will be emitted, depends on the material, its purity, and the presence of defects. First, the electron has to be excited from the
valence band In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in w ...
into the
conduction band In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in ...
. In cathodoluminescence, this occurs as the result of an impinging high energy electron beam onto a
semiconductor A semiconductor is a material which has an electrical conductivity value falling between that of a conductor, such as copper, and an insulator, such as glass. Its resistivity falls as its temperature rises; metals behave in the opposite way. ...
. However, these primary electrons carry far too much energy to directly excite electrons. Instead, the inelastic scattering of the primary electrons in the crystal leads to the emission of
secondary electrons Secondary electrons are electrons generated as ionization products. They are called 'secondary' because they are generated by other radiation (the ''primary'' radiation). This radiation can be in the form of ions, electrons, or photons with suffici ...
, Auger electrons and
X-rays An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10  nanometers, corresponding to frequencies in the range 30&n ...
, which in turn can scatter as well. Such a cascade of scattering events leads to up to 103 secondary electrons per incident electron. These secondary electrons can excite valence electrons into the conduction band when they have a kinetic energy about three times the
band gap In solid-state physics, a band gap, also called an energy gap, is an energy range in a solid where no electronic states can exist. In graphs of the electronic band structure of solids, the band gap generally refers to the energy difference (i ...
energy of the material (E_\approx 3 E_g). From there the electron recombines with a hole in the valence band and creates a photon. The excess energy is transferred to phonons and thus heats the lattice. One of the advantages of excitation with an electron beam is that the band gap energy of materials that are investigated is not limited by the energy of the incident light as in the case of photoluminescence. Therefore, in cathodoluminescence, the "semiconductor" examined can, in fact, be almost any non-metallic material. In terms of band structure, classical semiconductors, insulators, ceramics, gemstones, minerals, and glasses can be treated the same way.


Microscopy

In
geology Geology () is a branch of natural science concerned with Earth and other astronomical objects, the features or rocks of which it is composed, and the processes by which they change over time. Modern geology significantly overlaps all other Ear ...
,
mineralogy Mineralogy is a subject of geology specializing in the scientific study of the chemistry, crystal structure, and physical (including optical) properties of minerals and mineralized artifacts. Specific studies within mineralogy include the pr ...
, materials science and semiconductor engineering, a scanning electron microscope (SEM) fitted with a cathodoluminescence detector, or an optical cathodoluminescence microscope, may be used to examine internal structures of semiconductors, rocks,
ceramic A ceramic is any of the various hard, brittle, heat-resistant and corrosion-resistant materials made by shaping and then firing an inorganic, nonmetallic material, such as clay, at a high temperature. Common examples are earthenware, porcela ...
s,
glass Glass is a non-crystalline, often transparent, amorphous solid that has widespread practical, technological, and decorative use in, for example, window panes, tableware, and optics. Glass is most often formed by rapid cooling (quenching) o ...
, etc. in order to get information on the composition, growth and quality of the material.


In a scanning electron microscope

In these instruments a focused beam of electrons impinges on a sample and induces it to emit light that is collected by an optical system, such as an elliptical mirror. From there, a
fiber optic An optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass ( silica) or plastic to a diameter slightly thicker than that of a human hair. Optical fibers are used most often as a mean ...
will transfer the light out of the microscope where it is separated into its component wavelengths by a
monochromator A monochromator is an optical device that transmits a mechanically selectable narrow band of wavelengths of light or other radiation chosen from a wider range of wavelengths available at the input. The name is from the Greek roots ''mono-'', ...
and is then detected with a
photomultiplier A photomultiplier is a device that converts incident photons into an electrical signal. Kinds of photomultiplier include: * Photomultiplier tube, a vacuum tube converting incident photons into an electric signal. Photomultiplier tubes (PMTs for s ...
tube. By scanning the microscope's beam in an X-Y pattern and measuring the light emitted with the beam at each point, a map of the optical activity of the specimen can be obtained (cathodoluminescence imaging). Instead, by measuring the wavelength dependence for a fixed point or a certain area, the spectral characteristics can be recorded (cathodoluminescence spectroscopy). Furthermore, if the photomultiplier tube is replaced with a
CCD camera A charge-coupled device (CCD) is an integrated circuit containing an array of linked, or coupled, capacitors. Under the control of an external circuit, each capacitor can transfer its electric charge to a neighboring capacitor. CCD sensors are a ...
, an entire
spectrum A spectrum (plural ''spectra'' or ''spectrums'') is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of color ...
can be measured at each point of a map (
hyperspectral imaging Hyperspectral imaging collects and processes information from across the electromagnetic spectrum. The goal of hyperspectral imaging is to obtain the spectrum for each pixel in the image of a scene, with the purpose of finding objects, identifyi ...
). Moreover, the optical properties of an object can be correlated to structural properties observed with the electron microscope. The primary advantages to the electron microscope based technique is its spatial resolution. In a scanning electron microscope, the attainable resolution is on the order of a few ten nanometers, while in a (scanning)
transmission electron microscope Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a gr ...
(TEM), nanometer-sized features can be resolved. Additionally, it is possible to perform nanosecond- to picosecond-level time-resolved measurements if the electron beam can be "chopped" into nano- or pico-second pulses by a beam-blanker or with a pulsed electron source. These advanced techniques are useful for examining low-dimensional semiconductor structures, such a
quantum well A quantum well is a potential well with only discrete energy values. The classic model used to demonstrate a quantum well is to confine particles, which were initially free to move in three dimensions, to two dimensions, by forcing them to occup ...
s or
quantum dots Quantum dots (QDs) are semiconductor particles a few nanometres in size, having optical and electronic properties that differ from those of larger particles as a result of quantum mechanics. They are a central topic in nanotechnology. When t ...
. While an electron microscope with a cathodoluminescence detector provides high magnification, an optical cathodoluminescence microscope benefits from its ability to show actual visible color features directly through the eyepiece. More recently developed systems try to combine both an optical and an electron microscope to take advantage of both these techniques.


Extended applications

Although
direct bandgap In semiconductor physics, the band gap of a semiconductor can be of two basic types, a direct band gap or an indirect band gap. The minimal-energy state in the conduction band and the maximal-energy state in the valence band are each characteri ...
semiconductors such as
GaAs Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a zinc blende crystal structure. Gallium arsenide is used in the manufacture of devices such as microwave frequency integrated circuits, monolithic microwave integrated circ ...
or
GaN The word Gan or the initials GAN may refer to: Places *Gan, a component of Hebrew placenames literally meaning "garden" China * Gan River (Jiangxi) * Gan River (Inner Mongolia), * Gan County, in Jiangxi province * Gansu, abbreviated ''G� ...
are most easily examined by these techniques, indirect semiconductors such as
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic ta ...
also emit weak cathodoluminescence, and can be examined as well. In particular, the luminescence of dislocated silicon is different from intrinsic silicon, and can be used to map defects in
integrated circuits An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of tiny ...
. Recently, cathodoluminescence performed in electron microscopes is also being used to study
surface plasmon resonance Surface plasmon resonance (SPR) is the resonant oscillation of conduction electrons at the interface between negative and positive permittivity material in a particle stimulated by incident light. SPR is the basis of many standard tools for measu ...
s in metallic
nanoparticles A nanoparticle or ultrafine particle is usually defined as a particle of matter that is between 1 and 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 10 ...
. Surface
plasmon In physics, a plasmon is a quantum of plasma oscillation. Just as light (an optical oscillation) consists of photons, the plasma oscillation consists of plasmons. The plasmon can be considered as a quasiparticle since it arises from the quan ...
s in metal nanoparticles can absorb and emit light, though the process is different from that in semiconductors. Similarly, cathodoluminescence has been exploited as a probe to map the local density of states of planar dielectric photonic crystals and nanostructured photonic materials.


See also

* Cathodoluminescence microscope *
Electron-stimulated luminescence Electron-stimulated luminescence (ESL) is production of light by cathodoluminescence, i.e. by a beam of electrons made to hit a fluorescent phosphor surface. This is also the method used to produce light in a cathode ray tube (CRT). Experimental ...
*
Luminescence Luminescence is spontaneous emission of light by a substance not resulting from heat; or "cold light". It is thus a form of cold-body radiation. It can be caused by chemical reactions, electrical energy, subatomic motions or stress on a cry ...
* Photoluminescence * Scanning electron microscopy


References


Further reading

*
''Electron_beams_set_nanostructures_aglow''_[PDF
/nowiki>.html" ;"title="DF">''Electron beams set nanostructures aglow'' [PDF
/nowiki>">DF">''Electron beams set nanostructures aglow'' [PDF
/nowiki> E. S. Reich, Nature 493, 143 (2013) * *
''Scanning Cathodoluminescence Microscopy''
C. M. Parish and P. E. Russell, in Advances in Imaging and Electron Physics, V.147, ed. P. W. Hawkes, P. 1 (2007)

, B. Granier and C. Staffelbach (2009) *[https://doi.org/10.1007/978-1-4757-9595-0 ''Cathodoluminescence Microscopy of Inorganic Solids,''], B. G. Yacobi and D. B. Holt, New York, Springer (1990)


External links


Scientific Results about High Spatial Resolution Cathodoluminescence
{{Authority control Electron beam Light sources Luminescence Materials science Scientific techniques