HOME

TheInfoList



OR:

{{Short description, Type of physical vapor deposition technique Cathodic arc deposition or Arc-PVD is a physical vapor deposition technique in which an electric arc is used to vaporize material from a
cathode A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. A conventional current describes the direction in whi ...
target. The vaporized material then condenses on a substrate, forming a
thin film A thin film is a layer of material ranging from fractions of a nanometer (monolayer) to several micrometers in thickness. The controlled synthesis of materials as thin films (a process referred to as deposition) is a fundamental step in many a ...
. The technique can be used to deposit
metal A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typica ...
lic, ceramic, and
composite Composite or compositing may refer to: Materials * Composite material, a material that is made from several different substances ** Metal matrix composite, composed of metal and other parts ** Cermet, a composite of ceramic and metallic materials ...
films.


History

Industrial use of modern cathodic arc deposition technology originated in Soviet Union around 1960–1970. By the late 70's Soviet government released the use of this technology to the West. Among many designs in USSR at that time the design by L. P. Sablev, et al., was allowed to be used outside the USSR.


Process

The arc evaporation process begins with the striking of a high
current Currents, Current or The Current may refer to: Science and technology * Current (fluid), the flow of a liquid or a gas ** Air current, a flow of air ** Ocean current, a current in the ocean *** Rip current, a kind of water current ** Current (stre ...
, low voltage arc on the surface of a
cathode A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. A conventional current describes the direction in whi ...
(known as the target) that gives rise to a small (usually a few micrometres wide), highly energetic emitting area known as a cathode spot. The localised temperature at the cathode spot is extremely high (around 15000 °C), which results in a high velocity (10 km/s) jet of vapourised cathode material, leaving a crater behind on the cathode surface. The cathode spot is only active for a short period of time, then it self-extinguishes and re-ignites in a new area close to the previous crater. This behaviour causes the apparent motion of the arc. As the arc is basically a current carrying conductor it can be influenced by the application of an electromagnetic field, which in practice is used to rapidly move the arc over the entire surface of the target, so that the total surface is eroded over time. The arc has an extremely high power density resulting in a high level of
ionization Ionization, or Ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule ...
(30-100%), multiple charged ions, neutral particles, clusters and macro-particles (droplets). If a reactive gas is introduced during the evaporation process, dissociation, ionization and
excitation Excitation, excite, exciting, or excitement may refer to: * Excitation (magnetic), provided with an electrical generator or alternator * Excite Ballpark, located in San Jose, California * Excite (web portal), web portal owned by IAC * Electron ...
can occur during interaction with the
ion flux Flux describes any effect that appears to pass or travel (whether it actually moves or not) through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications to physics. For transport ph ...
and a compound film will be deposited. One downside of the arc evaporation process is that if the cathode spot stays at an evaporative point for too long it can eject a large amount of macro-particles or droplets. These droplets are detrimental to the performance of the coating as they are poorly adhered and can extend through the coating. Worse still if the cathode target material has a low melting point such as
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. It has ...
the cathode spot can evaporate through the target resulting in either the target backing plate material being evaporated or cooling water entering the chamber. Therefore, magnetic fields as mentioned previously are used to control the motion of the arc. If cylindrical cathodes are used the cathodes can also be rotated during deposition. By not allowing the cathode spot to remain in one position too long aluminium targets can be used and the number of droplets is reduced. Some companies also use filtered arcs that use magnetic fields to separate the droplets from the coating flux.


Equipment design

A Sablev type Cathodic arc source, which is the most widely used in the West, consists of a short cylindrically shaped, electrically conductive target at the cathode with one open end. This target has an electrically-floating metal ring surrounding it, working as an arc confinement ring (Strel'nitskij shield). The anode for the system can be either the vacuum chamber wall or a discrete anode. Arc spots are generated by a mechanical trigger (or igniter) striking on the open end of the target making a temporary short circuit between the cathode and anode. After the arc spots are generated they can be steered by a magnetic field, or move randomly in absence of magnetic field. The plasma beam from a Cathodic Arc source contains some larger clusters of atoms or molecules (so called macro-particles), which prevent it from being useful for some applications without some kind of filtering. There are many designs for macro-particle filters and the most studied design is based on the work by I. I. Aksenov et al. in 70's. It consists of a quarter-torus duct bent at 90 degrees from the arc source and the plasma is guided out of the duct by principle of plasma optics. There are also other interesting designs, such as a design which incorporates a straight duct filter built-in with a truncated cone shaped cathode as reported by D. A. Karpov in the 1990s. This design became quite popular among both the thin hard-film coaters and researchers in Russia and former USSR countries until now. Cathodic arc sources can be made into a long tubular shape (extended-arc) or a long rectangular shape, but both designs are less popular.


Applications

Cathodic arc deposition is actively used to synthesize extremely hard films to protect the surface of cutting tools and extend their life significantly. A wide variety of thin hard-film,
Superhard coatings A superhard material is a material with a hardness value exceeding 40 gigapascals (GPa) when measured by the Vickers hardness test. They are virtually incompressible solids with high electron density and high bond covalency. As a result of their u ...
and
nanocomposite Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometers (nm) or structures having nano-scale repeat distances between the different phases that make up the material. The id ...
coatings can be synthesized by this technology including TiN,
TiAlN Titanium aluminium nitride (TiAlN) or aluminium titanium nitride (AlTiN; for aluminium contents higher than 50%) is a group of metastable hard coatings consisting of nitrogen and the metallic elements aluminium and titanium. Four important composi ...
, CrN, ZrN, AlCrTiN and TiAlSiN. This is also used quite extensively particularly for carbon ion deposition to create
diamond-like carbon Diamond-like carbon (DLC) is a class of amorphous carbon material that displays some of the typical properties of diamond. DLC is usually applied as coatings to other materials that could benefit from such properties. DLC exists in seven diffe ...
films. Because the ions are blasted from the surface ballistically, it is common for not only single atoms, but larger clusters of atoms to be ejected. Thus, this kind of system requires a filter to remove atom clusters from the beam before deposition. The DLC film from a filtered-arc contains an extremely high percentage of sp3 diamond which is known as tetrahedral amorphous carbon, or ta-C. Filtered Cathodic arc can be used as metal ion/plasma source for '' Ion implantation'' and '' Plasma Immersion Ion Implantation and Deposition'' (PIII&D).


See also

*
Ion beam deposition Ion beam deposition (IBD) is a process of applying materials to a target through the application of an ion beam. Ion beam deposition setup with mass separator An ion beam deposition apparatus typically consists of an ion source, ion optics, and ...
* Physical vapor deposition


References

* SVC "51st Annual Technical Conference Proceedings" (2008) Society of Vacuum Coaters, ISSN 0737-5921 (previous proceedings available on CD from SVC Publications) * A. Anders, "Cathodic Arcs: From Fractal Spots to Energetic Condensation" (2008) Springer, New York. * R. L. Boxman, D. M. Sanders, and P. J. Martin (editors) "Handbook of Vacuum Arc Science and Technology"(1995) Noyes Publications, Park Ridge, N.J. * Brown, I.G., Annu. Rev. Mat. Sci. 28, 243 (1998). * Sablev et al., US Patent #3,783,231, 01 Jan. 1974 * Sablev et al., US Patent #3,793,179, 19 Feb. 1974 * D. A. Karpov, "Cathodic arc sources and macroparticle filtering", Surface and Coatings technology 96 (1997) 22-23 * S. Surinphong, "Basic Knowledge about PVD Systems and Coatings for Tools Coating" (1998), in Thai language * A. I. Morozov, Reports of the Academy of Sciences of the USSR, 163 (1965) 1363, in Russian language * I. I. Aksenov, V. A. Belous, V. G. Padalka, V. M. Khoroshikh, "Transport of plasma streams in a curvilinear plasma-optics system", Soviet Journal of Plasma Physics, 4 (1978) 425 * https://www.researchgate.net/publication/273004395_Arc_source_designs * https://www.researchgate.net/publication/234202890_Transport_of_plasma_streams_in_a_curvilinear_plasma-optics_system Industrial processes Thin film deposition Coatings