Category Of Small Categories
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, specifically in
category theory Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, cate ...
, the category of small categories, denoted by Cat, is the
category Category, plural categories, may refer to: Philosophy and general uses * Categorization, categories in cognitive science, information science and generally *Category of being * ''Categories'' (Aristotle) *Category (Kant) *Categories (Peirce) * ...
whose objects are all small categories and whose
morphism In mathematics, particularly in category theory, a morphism is a structure-preserving map from one mathematical structure to another one of the same type. The notion of morphism recurs in much of contemporary mathematics. In set theory, morphisms a ...
s are
functor In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) ar ...
s between categories. Cat may actually be regarded as a
2-category In category theory, a strict 2-category is a category with "morphisms between morphisms", that is, where each hom-set itself carries the structure of a category. It can be formally defined as a category enriched over Cat (the category of catego ...
with
natural transformation In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natur ...
s serving as 2-morphisms. The
initial object In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element): ...
of Cat is the ''empty category'' 0, which is the category of no objects and no morphisms. The
terminal object In category theory, a branch of mathematics, an initial object of a category is an object in such that for every object in , there exists precisely one morphism . The dual notion is that of a terminal object (also called terminal element): ...
is the ''terminal category'' or ''trivial category'' 1 with a single object and morphism.terminal category
at nLab The category Cat is itself a
large category In mathematics, a category (sometimes called an abstract category to distinguish it from a concrete category) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows ass ...
, and therefore not an object of itself. In order to avoid problems analogous to
Russell's paradox In mathematical logic, Russell's paradox (also known as Russell's antinomy) is a set-theoretic paradox discovered by the British philosopher and mathematician Bertrand Russell in 1901. Russell's paradox shows that every set theory that contains a ...
one cannot form the “category of all categories”. But it is possible to form a
quasicategory In mathematics, more specifically category theory, a quasi-category (also called quasicategory, weak Kan complex, inner Kan complex, infinity category, ∞-category, Boardman complex, quategory) is a generalization of the notion of a category. Th ...
(meaning objects and morphisms merely form a conglomerate) of all categories.


Free category

The category Cat has a
forgetful functor In mathematics, in the area of category theory, a forgetful functor (also known as a stripping functor) 'forgets' or drops some or all of the input's structure or properties 'before' mapping to the output. For an algebraic structure of a given signa ...
''U'' into the
quiver category In graph theory, a quiver is a directed graph where loops and multiple arrows between two vertices are allowed, i.e. a multidigraph. They are commonly used in representation theory: a representation  of a quiver assigns a vector space  ...
Quiv: :''U'' : Cat → Quiv This functor forgets the identity morphisms of a given category, and it forgets morphism compositions. The
left adjoint In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are kno ...
of this functor is a
functor In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) ar ...
''F'' taking Quiv to the corresponding free categories: :''F'' : Quiv → Cat


1-Categorical properties

* Cat has all small limits and colimits. * Cat is a
Cartesian closed category In category theory, a category is Cartesian closed if, roughly speaking, any morphism defined on a product of two objects can be naturally identified with a morphism defined on one of the factors. These categories are particularly important in ma ...
, with
exponential Exponential may refer to any of several mathematical topics related to exponentiation, including: *Exponential function, also: **Matrix exponential, the matrix analogue to the above * Exponential decay, decrease at a rate proportional to value *Exp ...
D^C given by the
functor category In category theory, a branch of mathematics, a functor category D^C is a category where the objects are the functors F: C \to D and the morphisms are natural transformations \eta: F \to G between the functors (here, G: C \to D is another object in t ...
\mathrm(C, D). * Cat is ''not'' locally Cartesian closed. * Cat is locally finitely presentable.


See also

*
Nerve of a category In category theory, a discipline within mathematics, the nerve ''N''(''C'') of a small category ''C'' is a simplicial set constructed from the objects and morphisms of ''C''. The geometric realization of this simplicial set is a topological space ...
*
Universal set In set theory, a universal set is a set which contains all objects, including itself. In set theory as usually formulated, it can be proven in multiple ways that a universal set does not exist. However, some non-standard variants of set theory inc ...
, the notion of a 'set of all sets'


References

*


External links

* Small categories {{categorytheory-stub