HOME

TheInfoList



OR:

In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is : A\times B = \. A table can be created by taking the Cartesian product of a set of rows and a set of columns. If the Cartesian product is taken, the cells of the table contain ordered pairs of the form . One can similarly define the Cartesian product of ''n'' sets, also known as an ''n''-fold Cartesian product, which can be represented by an ''n''-dimensional array, where each element is an ''n''- tuple. An ordered pair is a 2-tuple or couple. More generally still, one can define the Cartesian product of an indexed family of sets. The Cartesian product is named after René Descartes, whose formulation of
analytic geometry In classical mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry. Analytic geometry is used in physics and engineer ...
gave rise to the concept, which is further generalized in terms of
direct product In mathematics, one can often define a direct product of objects already known, giving a new one. This generalizes the Cartesian product of the underlying sets, together with a suitably defined structure on the product set. More abstractly, one t ...
.


Examples


A deck of cards

An illustrative example is the
standard 52-card deck The standard 52-card deck of French-suited playing cards is the most common pack of playing cards used today. In English-speaking countries it is the only traditional pack used for playing cards; in many countries of the world, however, it is used ...
. The standard playing card ranks form a 13-element set. The card suits form a four-element set. The Cartesian product of these sets returns a 52-element set consisting of 52 ordered pairs, which correspond to all 52 possible playing cards. returns a set of the form . returns a set of the form . These two sets are distinct, even disjoint, but there is a natural
bijection In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other ...
between them, under which (3, ♣) corresponds to (♣, 3) and so on.


A two-dimensional coordinate system

The main historical example is the
Cartesian plane A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in ...
in
analytic geometry In classical mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry. Analytic geometry is used in physics and engineer ...
. In order to represent geometrical shapes in a numerical way, and extract numerical information from shapes' numerical representations, René Descartes assigned to each point in the plane a pair of real numbers, called its
coordinates In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is sign ...
. Usually, such a pair's first and second components are called its ''x'' and ''y'' coordinates, respectively (see picture). The set of all such pairs (i.e., the Cartesian product , with ℝ denoting the real numbers) is thus assigned to the set of all points in the plane.


Most common implementation (set theory)

A formal definition of the Cartesian product from set-theoretical principles follows from a definition of ordered pair. The most common definition of ordered pairs, Kuratowski's definition, is (x, y) = \. Under this definition, (x, y) is an element of \mathcal(\mathcal(X \cup Y)), and X\times Y is a subset of that set, where \mathcal represents the power set operator. Therefore, the existence of the Cartesian product of any two sets in ZFC follows from the axioms of
pairing In mathematics, a pairing is an ''R''-bilinear map from the Cartesian product of two ''R''- modules, where the underlying ring ''R'' is commutative. Definition Let ''R'' be a commutative ring with unit, and let ''M'', ''N'' and ''L'' be ''R''-mo ...
,
union Union commonly refers to: * Trade union, an organization of workers * Union (set theory), in mathematics, a fundamental operation on sets Union may also refer to: Arts and entertainment Music * Union (band), an American rock group ** ''U ...
, power set, and specification. Since functions are usually defined as a special case of relations, and relations are usually defined as subsets of the Cartesian product, the definition of the two-set Cartesian product is necessarily prior to most other definitions.


Non-commutativity and non-associativity

Let ''A'', ''B'', ''C'', and ''D'' be sets. The Cartesian product is not commutative, : A \times B \neq B \times A, because the ordered pairs are reversed unless at least one of the following conditions is satisfied: * ''A'' is equal to ''B'', or * ''A'' or ''B'' is the
empty set In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other ...
. For example: : ''A'' = ; ''B'' = :: ''A'' × ''B'' = × = :: ''B'' × ''A'' = × = : ''A'' = ''B'' = :: ''A'' × ''B'' = ''B'' × ''A'' = × = : ''A'' = ; ''B'' = ∅ :: ''A'' × ''B'' = × ∅ = ∅ :: ''B'' × ''A'' = ∅ × = ∅ Strictly speaking, the Cartesian product is not
associative In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement ...
(unless one of the involved sets is empty). : (A\times B)\times C \neq A \times (B \times C) If for example ''A'' = , then .


Intersections, unions, and subsets

The Cartesian product satisfies the following property with respect to
intersections In mathematics, the intersection of two or more objects is another object consisting of everything that is contained in all of the objects simultaneously. For example, in Euclidean geometry, when two lines in a plane are not parallel, their ...
(see middle picture). :(A \cap B) \times (C \cap D) = (A \times C) \cap (B \times D) In most cases, the above statement is not true if we replace intersection with
union Union commonly refers to: * Trade union, an organization of workers * Union (set theory), in mathematics, a fundamental operation on sets Union may also refer to: Arts and entertainment Music * Union (band), an American rock group ** ''U ...
(see rightmost picture). (A \cup B) \times (C \cup D) \neq (A \times C) \cup (B \times D) In fact, we have that: (A \times C) \cup (B \times D) = A \setminus B) \times C\cup A \cap B) \times (C \cup D)\cup B \setminus A) \times D/math> For the set difference, we also have the following identity: (A \times C) \setminus (B \times D) = \times (C \setminus D)\cup A \setminus B) \times C/math> Here are some rules demonstrating distributivity with other operators (see leftmost picture):Singh, S. (August 27, 2009). ''Cartesian product''. Retrieved from the Connexions Web site: http://cnx.org/content/m15207/1.5/ \begin A \times (B \cap C) &= (A \times B) \cap (A \times C), \\ A \times (B \cup C) &= (A \times B) \cup (A \times C), \\ A \times (B \setminus C) &= (A \times B) \setminus (A \times C), \end :(A \times B)^\complement = \left(A^\complement \times B^\complement\right) \cup \left(A^\complement \times B\right) \cup \left(A \times B^\complement\right)\!, where A^\complement denotes the
absolute complement In set theory, the complement of a set , often denoted by (or ), is the set of elements not in . When all sets in the universe, i.e. all sets under consideration, are considered to be members of a given set , the absolute complement of is the ...
of ''A''. Other properties related with subsets are: \text A \subseteq B \text A \times C \subseteq B \times C; :\text A,B \neq \emptyset \text A \times B \subseteq C \times D \!\iff\! A \subseteq C \text B \subseteq D.


Cardinality

The
cardinality In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized ...
of a set is the number of elements of the set. For example, defining two sets: and Both set ''A'' and set ''B'' consist of two elements each. Their Cartesian product, written as , results in a new set which has the following elements: : ''A'' × ''B'' = . where each element of ''A'' is paired with each element of ''B'', and where each pair makes up one element of the output set. The number of values in each element of the resulting set is equal to the number of sets whose Cartesian product is being taken; 2 in this case. The cardinality of the output set is equal to the product of the cardinalities of all the input sets. That is, : , ''A'' × ''B'', = , ''A'', · , ''B'', . In this case, , ''A'' × ''B'', = 4 Similarly : , ''A'' × ''B'' × ''C'', = , ''A'', · , ''B'', · , ''C'', and so on. The set is infinite if either ''A'' or ''B'' is infinite, and the other set is not the empty set.


Cartesian products of several sets


''n''-ary Cartesian product

The Cartesian product can be generalized to the ''n''-ary Cartesian product over ''n'' sets ''X''1, ..., ''Xn'' as the set : X_1\times\cdots\times X_n = \ of ''n''-tuples. If tuples are defined as nested ordered pairs, it can be identified with . If a tuple is defined as a function on that takes its value at ''i'' to be the ''i''th element of the tuple, then the Cartesian product ''X''1×⋯×''X''''n'' is the set of functions : \.


''n''-ary Cartesian power

The Cartesian square of a set ''X'' is the Cartesian product . An example is the 2-dimensional
plane Plane(s) most often refers to: * Aero- or airplane, a powered, fixed-wing aircraft * Plane (geometry), a flat, 2-dimensional surface Plane or planes may also refer to: Biology * Plane (tree) or ''Platanus'', wetland native plant * ''Planes' ...
where R is the set of real numbers: R2 is the set of all points where ''x'' and ''y'' are real numbers (see the
Cartesian coordinate system A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured i ...
). The ''n''-ary Cartesian power of a set ''X'', denoted X^n, can be defined as : X^n = \underbrace_= \. An example of this is , with R again the set of real numbers, and more generally R''n''. The ''n''-ary Cartesian power of a set ''X'' is isomorphic to the space of functions from an ''n''-element set to ''X''. As a special case, the 0-ary Cartesian power of ''X'' may be taken to be a singleton set, corresponding to the
empty function In mathematics, a function from a set to a set assigns to each element of exactly one element of .; the words map, mapping, transformation, correspondence, and operator are often used synonymously. The set is called the domain of the func ...
with
codomain In mathematics, the codomain or set of destination of a function is the set into which all of the output of the function is constrained to fall. It is the set in the notation . The term range is sometimes ambiguously used to refer to either ...
''X''.


Infinite Cartesian products

It is possible to define the Cartesian product of an arbitrary (possibly infinite) indexed family of sets. If ''I'' is any
index set In mathematics, an index set is a set whose members label (or index) members of another set. For instance, if the elements of a set may be ''indexed'' or ''labeled'' by means of the elements of a set , then is an index set. The indexing consis ...
, and \_ is a family of sets indexed by ''I'', then the Cartesian product of the sets in \_ is defined to be : \prod_ X_i = \left\, that is, the set of all functions defined on the
index set In mathematics, an index set is a set whose members label (or index) members of another set. For instance, if the elements of a set may be ''indexed'' or ''labeled'' by means of the elements of a set , then is an index set. The indexing consis ...
such that the value of the function at a particular index ''i'' is an element of ''Xi''. Even if each of the ''Xi'' is nonempty, the Cartesian product may be empty if the
axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection ...
, which is equivalent to the statement that every such product is nonempty, is not assumed. For each ''j'' in ''I'', the function : \pi_: \prod_ X_i \to X_, defined by \pi_(f) = f(j) is called the ''j''th projection map. Cartesian power is a Cartesian product where all the factors ''Xi'' are the same set ''X''. In this case, : \prod_ X_i = \prod_ X is the set of all functions from ''I'' to ''X'', and is frequently denoted ''XI''. This case is important in the study of
cardinal exponentiation In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural number: the number of elements in the set. Th ...
. An important special case is when the index set is \mathbb, the natural numbers: this Cartesian product is the set of all infinite sequences with the ''i''th term in its corresponding set ''Xi''. For example, each element of : \prod_^\infty \mathbb R = \mathbb R \times \mathbb R \times \cdots can be visualized as a vector with countably infinite real number components. This set is frequently denoted \mathbb^\omega, or \mathbb^.


Other forms


Abbreviated form

If several sets are being multiplied together (e.g., ''X''1, ''X''2, ''X''3, …), then some authorsOsborne, M., and Rubinstein, A., 1994. ''A Course in Game Theory''. MIT Press. choose to abbreviate the Cartesian product as simply ×''X''''i''.


Cartesian product of functions

If ''f'' is a function from ''X'' to ''A'' and ''g'' is a function from ''Y'' to ''B'', then their Cartesian product is a function from to with : (f\times g)(x, y) = (f(x), g(y)). This can be extended to tuples and infinite collections of functions. This is different from the standard Cartesian product of functions considered as sets.


Cylinder

Let A be a set and B \subseteq A. Then the ''cylinder'' of B with respect to A is the Cartesian product B \times A of B and A. Normally, A is considered to be the universe of the context and is left away. For example, if B is a subset of the natural numbers \mathbb, then the cylinder of B is B \times \mathbb.


Definitions outside set theory


Category theory

Although the Cartesian product is traditionally applied to sets,
category theory Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, cate ...
provides a more general interpretation of the
product Product may refer to: Business * Product (business), an item that serves as a solution to a specific consumer problem. * Product (project management), a deliverable or set of deliverables that contribute to a business solution Mathematics * Produ ...
of mathematical structures. This is distinct from, although related to, the notion of a Cartesian square in category theory, which is a generalization of the fiber product. Exponentiation is the right adjoint of the Cartesian product; thus any category with a Cartesian product (and a final object) is a
Cartesian closed category In category theory, a category is Cartesian closed if, roughly speaking, any morphism defined on a product of two objects can be naturally identified with a morphism defined on one of the factors. These categories are particularly important in ma ...
.


Graph theory

In
graph theory In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are conn ...
, the Cartesian product of two graphs ''G'' and ''H'' is the graph denoted by , whose
vertex Vertex, vertices or vertexes may refer to: Science and technology Mathematics and computer science *Vertex (geometry), a point where two or more curves, lines, or edges meet *Vertex (computer graphics), a data structure that describes the position ...
set is the (ordinary) Cartesian product and such that two vertices (''u'',''v'') and (''u''′,''v''′) are adjacent in , if and only if and ''v'' is adjacent with ''v''′ in ''H'', ''or'' and ''u'' is adjacent with ''u''′ in ''G''. The Cartesian product of graphs is not a
product Product may refer to: Business * Product (business), an item that serves as a solution to a specific consumer problem. * Product (project management), a deliverable or set of deliverables that contribute to a business solution Mathematics * Produ ...
in the sense of category theory. Instead, the categorical product is known as the tensor product of graphs.


See also

*
Binary relation In mathematics, a binary relation associates elements of one set, called the ''domain'', with elements of another set, called the ''codomain''. A binary relation over sets and is a new set of ordered pairs consisting of elements in and i ...
* Concatenation of sets of strings *
Coproduct In category theory, the coproduct, or categorical sum, is a construction which includes as examples the disjoint union of sets and of topological spaces, the free product of groups, and the direct sum of modules and vector spaces. The coprodu ...
*
Cross product In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here E), and is d ...
*
Direct product of groups In mathematics, specifically in group theory, the direct product is an operation that takes two groups and and constructs a new group, usually denoted . This operation is the group-theoretic analogue of the Cartesian product of sets and is o ...
* Empty product * Euclidean space * Exponential object *
Finitary relation In mathematics, a finitary relation over sets is a subset of the Cartesian product ; that is, it is a set of ''n''-tuples consisting of elements ''x'i'' in ''X'i''. Typically, the relation describes a possible connection between the eleme ...
* Join (SQL) § Cross join * Orders on the Cartesian product of totally ordered sets *
Axiom of power set In mathematics, the axiom of power set is one of the Zermelo–Fraenkel axioms of axiomatic set theory. In the formal language of the Zermelo–Fraenkel axioms, the axiom reads: :\forall x \, \exists y \, \forall z \, \in y \iff \forall w ...
(to prove the existence of the Cartesian product) * Product (category theory) * Product topology * Product type *
Ultraproduct The ultraproduct is a mathematical construction that appears mainly in abstract algebra and mathematical logic, in particular in model theory and set theory. An ultraproduct is a quotient of the direct product of a family of structures. All factors ...


References


External links


Cartesian Product at ProvenMath
*

{{Mathematical logic Axiom of choice Operations on sets