HOME

TheInfoList



OR:

Transcriptional repressor CTCF also known as 11-zinc finger protein or CCCTC-binding factor is a
transcription factor In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The f ...
that in humans is encoded by the ''CTCF''
gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
. CTCF is involved in many cellular processes, including
transcriptional regulation In molecular biology and genetics, transcriptional regulation is the means by which a cell regulates the conversion of DNA to RNA ( transcription), thereby orchestrating gene activity. A single gene can be regulated in a range of ways, from ...
, insulator activity,
V(D)J recombination V(D)J recombination is the mechanism of somatic recombination that occurs only in developing lymphocytes during the early stages of T and B cell maturation. It results in the highly diverse repertoire of antibodies/immunoglobulins and T cell re ...
and regulation of
chromatin Chromatin is a complex of DNA and protein found in eukaryote, eukaryotic cells. The primary function is to package long DNA molecules into more compact, denser structures. This prevents the strands from becoming tangled and also plays important ...
architecture.


Discovery

CCCTC-Binding factor or CTCF was initially discovered as a negative regulator of the chicken
c-myc ''Myc'' is a family of regulator genes and proto-oncogenes that code for transcription factors. The ''Myc'' family consists of three related human genes: ''c-myc'' ( MYC), ''l-myc'' ( MYCL), and ''n-myc'' ( MYCN). ''c-myc'' (also sometimes re ...
gene. This protein was found to be binding to three regularly spaced repeats of the core sequence CCCTC and thus was named CCCTC binding factor.


Function

The primary role of CTCF is thought to be in regulating the 3D structure of chromatin. CTCF binds together strands of DNA, thus forming chromatin loops, and anchors DNA to cellular structures like the
nuclear lamina The nuclear lamina is a dense (~30 to 100  nm thick) fibrillar network inside the nucleus of eukaryote cells. It is composed of intermediate filaments and membrane associated proteins. Besides providing mechanical support, the nuclear lamina ...
. It also defines the boundaries between active and heterochromatic DNA. Since the 3D structure of DNA influences the regulation of genes, CTCF's activity influences the expression of genes. CTCF is thought to be a primary part of the activity of insulators, sequences that block the interaction between enhancers and promoters. CTCF binding has also been both shown to promote and repress gene expression. It is unknown whether CTCF affects gene expression solely through its looping activity, or if it has some other, unknown, activity. In a recent study, it has been shown that, in addition to demarcating TADs, CTCF mediates promoter–enhancer loops, often located in promoter-proximal regions, to facilitate the promoter–enhancer interactions within one TAD. This is in line with the concept that a subpopulation of CTCF associates with the RNA polymerase II (Pol II) protein complex to activate transcription. It is likely that CTCF helps to bridge the transcription factor-bound enhancers to transcription start site-proximal regulatory elements and to initiate transcription by interacting with Pol II, thus supporting a role of CTCF in facilitating contacts between transcription regulatory sequences. This model has been demonstrated by the previous work on the beta-globin locus.


Observed activity

The binding of CTCF has been shown to have many effects, which are enumerated below. In each case, it is unknown if CTCF directly evokes the outcome or if it does so indirectly (in particular through its looping role).


Transcriptional regulation

The protein CTCF plays a heavy role in repressing the insulin-like growth factor 2 gene, by binding to the H-19 imprinting control region (ICR) along with differentially-methylated region-1 ( DMR1) and MAR3.


Insulation

Binding of targeting sequence elements by CTCF can block the interaction between enhancers and promoters, therefore limiting the activity of enhancers to certain functional domains. Besides acting as enhancer blocking, CTCF can also act as a chromatin barrier by preventing the spread of heterochromatin structures.


Regulation of chromatin architecture

CTCF physically binds to itself to form homodimers, which causes the bound DNA to form loops. CTCF also occurs frequently at the boundaries of sections of DNA bound to the
nuclear lamina The nuclear lamina is a dense (~30 to 100  nm thick) fibrillar network inside the nucleus of eukaryote cells. It is composed of intermediate filaments and membrane associated proteins. Besides providing mechanical support, the nuclear lamina ...
. Using chromatin immuno-precipitation (ChIP) followed by ChIP-seq, it was found that CTCF localizes with
cohesin Cohesin is a protein complex that mediates sister chromatid cohesion, homologous recombination, and DNA looping. Cohesin is formed of SMC3, SMC1, SCC1 and SCC3 ( SA1 or SA2 in humans). Cohesin holds sister chromatids together after DNA rep ...
genome-wide and affects gene regulatory mechanisms and the higher-order chromatin structure. It is currently believed that the DNA loops are formed by the "loop extrusion" mechanism, whereby the cohesin ring is actively being translocated along the DNA until it meets CTCF. CTCF has to be in a proper orientation to stop cohesin.


Regulation of RNA splicing

CTCF binding has been shown to influence mRNA splicing.


DNA binding

CTCF binds to the
consensus sequence In molecular biology and bioinformatics, the consensus sequence (or canonical sequence) is the calculated order of most frequent residues, either nucleotide or amino acid, found at each position in a sequence alignment. It serves as a simplified r ...
CCGCGNGGNGGCAG (in IUPAC notation). This sequence is defined by 11
zinc finger A zinc finger is a small protein structural motif that is characterized by the coordination of one or more zinc ions (Zn2+) in order to stabilize the fold. It was originally coined to describe the finger-like appearance of a hypothesized struct ...
motifs in its structure. CTCF's binding is disrupted by CpG methylation of the DNA it binds to. On the other hand, CTCF binding may set boundaries for the spreading of DNA methylation. In recent studies, CTCF binding loss is reported to increase localized CpG methylation, which reflected another epigenetic remodeling role of CTCF in human genome. CTCF binds to an average of about 55,000 DNA sites in 19 diverse cell types (12 normal and 7 immortal) and in total 77,811 distinct binding sites across all 19 cell types. CTCF’s ability to bind to multiple sequences through the usage of various combinations of its
zinc finger A zinc finger is a small protein structural motif that is characterized by the coordination of one or more zinc ions (Zn2+) in order to stabilize the fold. It was originally coined to describe the finger-like appearance of a hypothesized struct ...
s earned it the status of a “multivalent protein”. More than 30,000 CTCF binding sites have been characterized. The human genome contains anywhere between 15,000-40,000 CTCF binding sites depending on cell type, suggesting a widespread role for CTCF in gene regulation. In addition CTCF binding sites act as nucleosome positioning anchors so that, when used to align various genomic signals, multiple flanking nucleosomes can be readily identified. On the other hand, high-resolution nucleosome mapping studies have demonstrated that the differences of CTCF binding between cell types may be attributed to the differences in nucleosome locations. Methylation loss at CTCF-binding site of some genes has been found to be related to human diseases, including male infertility.


Protein-protein interactions

CTCF binds to itself to form
homodimers In biochemistry, a protein dimer is a macromolecular complex formed by two protein monomers, or single proteins, which are usually non-covalently bound. Many macromolecules, such as proteins or nucleic acids, form dimers. The word ''dimer'' has ...
. CTCF has also been shown to
interact Advocates for Informed Choice, doing business as, dba interACT or interACT Advocates for Intersex Youth, is a 501(c)(3) nonprofit organization using innovative strategies to advocate for the legal and human rights of children with intersex trai ...
with Y box binding protein 1. CTCF also co-localizes with
cohesin Cohesin is a protein complex that mediates sister chromatid cohesion, homologous recombination, and DNA looping. Cohesin is formed of SMC3, SMC1, SCC1 and SCC3 ( SA1 or SA2 in humans). Cohesin holds sister chromatids together after DNA rep ...
, which extrudes chromatin loops by actively translocating one or two DNA strands through its ring-shaped structure, until it meets CTCF in a proper orientation. CTCF is also known to interact with chromatin remodellers such as Chd4 and Snf2h ( SMARCA5).


References


Further reading

* * * * * * * * * * * * * * * * *


External links

* * * * https://www.ctcfcommunity.org A Group for families affected by CTCF mutations {{Transcription factors, g2 Transcription factors Gene expression Nuclear organization