HOME

TheInfoList



OR:

In
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic function, integer-valued functions. German mathematician Carl Friedrich Gauss (1777â ...
, cuspidal representations are certain
representations ''Representations'' is an interdisciplinary journal in the humanities published quarterly by the University of California Press. The journal was established in 1983 and is the founding publication of the New Historicism movement of the 1980s. It ...
of
algebraic groups In mathematics, an algebraic group is an algebraic variety endowed with a group structure which is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory. M ...
that occur discretely in L^2 spaces. The term ''cuspidal'' is derived, at a certain distance, from the
cusp form In number theory, a branch of mathematics, a cusp form is a particular kind of modular form with a zero constant coefficient in the Fourier series expansion. Introduction A cusp form is distinguished in the case of modular forms for the modular gro ...
s of classical
modular form In mathematics, a modular form is a (complex) analytic function on the upper half-plane satisfying a certain kind of functional equation with respect to the Group action (mathematics), group action of the modular group, and also satisfying a grow ...
theory. In the contemporary formulation of
automorphic representation In harmonic analysis and number theory, an automorphic form is a well-behaved function from a topological group ''G'' to the complex numbers (or complex vector space) which is invariant under the action of a discrete subgroup \Gamma \subset G of ...
s, representations take the place of
holomorphic function In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex derivativ ...
s; these representations may be of
adelic algebraic group In abstract algebra, an adelic algebraic group is a semitopological group defined by an algebraic group ''G'' over a number field ''K'', and the adele ring ''A'' = ''A''(''K'') of ''K''. It consists of the points of ''G'' having values in ''A''; the ...
s. When the group is the
general linear group In mathematics, the general linear group of degree ''n'' is the set of invertible matrices, together with the operation of ordinary matrix multiplication. This forms a group, because the product of two invertible matrices is again invertible, ...
\operatorname_2, the cuspidal representations are directly related to cusp forms and
Maass form In mathematics, Maass forms or Maass wave forms are studied in the theory of automorphic forms. Maass forms are complex-valued smooth functions of the upper half plane, which transform in a similar way under the operation of a discrete subgroup \ ...
s. For the case of cusp forms, each
Hecke eigenform In mathematics, an eigenform (meaning simultaneous Hecke eigenform with modular group SL(2,Z)) is a modular form which is an eigenvector for all Hecke operators ''Tm'', ''m'' = 1, 2, 3, .... Eigenforms fall into the realm ...
( newform) corresponds to a cuspidal representation.


Formulation

Let ''G'' be a reductive algebraic group over a
number field In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension). Thus K is a f ...
''K'' and let A denote the
adele Adele Laurie Blue Adkins (, ; born 5 May 1988), professionally known by the mononym Adele, is an English singer and songwriter. After graduating in arts from the BRIT School in 2006, Adele signed a reco ...
s of ''K''. The group ''G''(''K'') embeds diagonally in the group ''G''(A) by sending ''g'' in ''G''(''K'') to the tuple (''g''''p'')''p'' in ''G''(A) with ''g'' = ''g''''p'' for all (finite and infinite) primes ''p''. Let ''Z'' denote the
center Center or centre may refer to: Mathematics *Center (geometry), the middle of an object * Center (algebra), used in various contexts ** Center (group theory) ** Center (ring theory) * Graph center, the set of all vertices of minimum eccentrici ...
of ''G'' and let ω be a
continuous Continuity or continuous may refer to: Mathematics * Continuity (mathematics), the opposing concept to discreteness; common examples include ** Continuous probability distribution or random variable in probability and statistics ** Continuous ...
unitary character from ''Z''(''K'') \ Z(A)× to C×. Fix a
Haar measure In mathematical analysis, the Haar measure assigns an "invariant volume" to subsets of locally compact topological groups, consequently defining an integral for functions on those groups. This measure was introduced by Alfréd Haar in 1933, though ...
on ''G''(A) and let ''L''20(''G''(''K'') \ ''G''(A), ω) denote the
Hilbert space In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natural ...
of
complex Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each ...
-valued
measurable function In mathematics and in particular measure theory, a measurable function is a function between the underlying sets of two measurable spaces that preserves the structure of the spaces: the preimage of any measurable set is measurable. This is in di ...
s, ''f'', on ''G''(A) satisfying #''f''(γ''g'') = ''f''(''g'') for all γ ∈ ''G''(''K'') #''f''(''gz'') = ''f''(''g'')ω(''z'') for all ''z'' ∈ ''Z''(A) #\int_, f(g), ^2\,dg < \infty #\int_f(ug)\,du=0 for all
unipotent radical In mathematics, a unipotent element ''r'' of a ring ''R'' is one such that ''r'' âˆ’ 1 is a nilpotent element; in other words, (''r'' âˆ’ 1)''n'' is zero for some ''n''. In particular, a square matrix ''M'' is a unipote ...
s, ''U'', of all proper
parabolic subgroup In the theory of algebraic groups, a Borel subgroup of an algebraic group ''G'' is a maximal Zariski closed and connected solvable algebraic subgroup. For example, in the general linear group ''GLn'' (''n x n'' invertible matrices), the subgroup ...
s of ''G''(A) and g ∈ ''G''(A). The
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can ...
''L''20(''G''(''K'') \ ''G''(A), ω) is called the space of cusp forms with central character ω on ''G''(A). A function appearing in such a space is called a cuspidal function. A cuspidal function generates a
unitary representation In mathematics, a unitary representation of a group ''G'' is a linear representation π of ''G'' on a complex Hilbert space ''V'' such that π(''g'') is a unitary operator for every ''g'' ∈ ''G''. The general theory is well-developed in case ''G ...
of the group ''G''(A) on the complex Hilbert space V_f generated by the right translates of ''f''. Here the
action Action may refer to: * Action (narrative), a literary mode * Action fiction, a type of genre fiction * Action game, a genre of video game Film * Action film, a genre of film * ''Action'' (1921 film), a film by John Ford * ''Action'' (1980 fil ...
of ''g'' ∈ ''G''(A) on V_f is given by :(g \cdot u)(x) = u(xg), \qquad u(x) = \sum_j c_j f(xg_j) \in V_f. The space of cusp forms with central character ω decomposes into a
direct sum of Hilbert spaces In abstract algebra, the direct sum is a construction which combines several modules into a new, larger module. The direct sum of modules is the smallest module which contains the given modules as submodules with no "unnecessary" constraints, ma ...
:L^2_0(G(K)\setminus G(\mathbf),\omega)=\widehat_m_\pi V_\pi where the sum is over
irreducible In philosophy, systems theory, science, and art, emergence occurs when an entity is observed to have properties its parts do not have on their own, properties or behaviors that emerge only when the parts interact in a wider whole. Emergence ...
subrepresentation In representation theory Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algeb ...
s of ''L''20(''G''(''K'') \ ''G''(A), ω) and the ''m'' are positive
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
s (i.e. each irreducible subrepresentation occurs with ''finite'' multiplicity). A cuspidal representation of ''G''(''A'') is such a subrepresentation (, ''V'') for some ''ω''. The groups for which the multiplicities ''m''{{pi all equal one are said to have the multiplicity-one property.


See also

*
Jacquet module In mathematics, the Jacquet module is a module used in the study of automorphic representations. The Jacquet functor is the functor that sends a linear representation to its Jacquet module. They are both named after Hervé Jacquet. Definition The ...


References

*James W. Cogdell, Henry Hyeongsin Kim, Maruti Ram Murty. ''Lectures on Automorphic L-functions'' (2004), Section 5 of Lecture 2. Representation theory of algebraic groups