Cryptic Unstable Transcript
   HOME

TheInfoList



OR:

Cryptic unstable transcripts (CUTs) are a subset of
non-coding RNA A non-coding RNA (ncRNA) is a functional RNA molecule that is not translated into a protein. The DNA sequence from which a functional non-coding RNA is transcribed is often called an RNA gene. Abundant and functionally important types of non-c ...
s (ncRNAs) that are produced from
intergenic An intergenic region is a stretch of DNA sequences located between genes. Intergenic regions may contain functional elements and Non-coding DNA#Junk DNA , junk DNA. ''Inter''genic regions should not be confused with ''intra''genic regions (or int ...
and intragenic regions. CUTs were first observed in ''
S. cerevisiae ''Saccharomyces cerevisiae'' () (brewer's yeast or baker's yeast) is a species of yeast (single-celled fungus microorganisms). The species has been instrumental in winemaking, baking, and brewing since ancient times. It is believed to have bee ...
'' yeast models and are found in most
eukaryote Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bacte ...
s. Some basic characteristics of CUTs include a length of around 200–800
base pair A base pair (bp) is a fundamental unit of double-stranded nucleic acids consisting of two nucleobases bound to each other by hydrogen bonds. They form the building blocks of the DNA double helix and contribute to the folded structure of both DNA ...
s, a 5' cap, poly-adenylated tail, and rapid degradation due to the combined activity of poly-adenylating polymerases and
exosome complex The exosome complex (or PM/Scl complex, often just called the exosome) is a multi-protein intracellular complex capable of degrading various types of RNA (ribonucleic acid) molecules. Exosome complexes are found in both eukaryotic cells and a ...
es. CUT transcription occurs through
RNA Polymerase II RNA polymerase II (RNAP II and Pol II) is a multiprotein complex that transcribes DNA into precursors of messenger RNA (mRNA) and most small nuclear RNA (snRNA) and microRNA. It is one of the three RNAP enzymes found in the nucleus of eukaryoti ...
and initiates from
nucleosome A nucleosome is the basic structural unit of DNA packaging in eukaryotes. The structure of a nucleosome consists of a segment of DNA wound around eight histone proteins and resembles thread wrapped around a spool. The nucleosome is the fundamen ...
-depleted regions, often in an
antisense In molecular biology and genetics, the sense of a nucleic acid molecule, particularly of a strand of DNA or RNA, refers to the nature of the roles of the strand and its complement in specifying a sequence of amino acids. Depending on the context, ...
orientation. To date, CUTs have a relatively uncharacterized function but have been implicated in a number of putative gene regulation and silencing pathways. Thousands of loci leading to the generation of CUTs have been described in the yeast genome. Additionally, stable uncharacterized transcripts, or SUTs, have also been detected in cells and bear many similarities to CUTs but are not degraded through the same pathways.


Discovery and characterization

Regions of non-coding RNA were mapped in several early experiments examining ''S. cerevisiae'' using a
tiling array Tiling arrays are a subtype of microarray chips. Like traditional microarrays, they function by hybridizing labeled DNA or RNA target molecules to probes fixed onto a solid surface. Tiling arrays differ from traditional microarrays in the natu ...
approach, which indicated that a large amount of transcriptional activity could be attributed to the intergenic region of the genome. These detected transcripts are not readily observed in the mRNA population because they are rapidly targeted for degradation in both the nucleus and cytoplasm. However, CUTs can be examined in yeast mutants with compromised exosome enzyme capability, which allows for transcripts to accumulate and enables their study and characterization. In 2009, the Steinmetz and Jacquier laboratories performed a series of high-resolution transcriptome maps, further characterizing the widespread distribution and location of non-coding transcripts within eukaryotes. CUTs were found to comprise around 13% of all mapped transcripts.


Degradation pathways

As CUTs cannot be observed at appreciable levels in wild-type ''S. cerevisiae'', a large component of their early study has focused on their degradation. To date, two main pathways have been identified: the recruitment of a degrading exosome via the Nrd1-Nab3-Sen1 protein complex assisted by TRAMP, and termination due to the poly-adenylating capability of the Pap1p complex. In addition to these two main pathways, 5' processing enzymes such as Xrn1 have also been shown to participate in CUT degradation. Many of these findings were generated by observing ''Δrrp6'' cells, a knock-out mutant for the exosome enzyme which has heightened levels of cryptic transcripts mapped to transgenic regions. In fact, deletion of the RRP6 subunit has served as one of the earliest and most frequently used methods for generating high concentrations of CUTs.


The Nrd1-Nab3-Sen1 and TRAMP pathway

Transcription of CUTs is terminated by the Nrd1-Nab3-Sen1 complex. Collectively, Nrd1 and Nab3 are proteins which bind to specific sequences (GUAA/G and UCUUG respectively) of RNA and Sen1 is helicase. Nrd1-Nab3-Sen1 recruit the nuclear exosome which contains the degrading RRP6 subunit. Assisting in the Nrd1-Nab3-Sen1 pathway as a co-factor is the TRAMP complex, which is responsible for poly-adenylating transcripts and marking them for degradation. The TRAMP complex was discovered in ''Δrrp6'' cells, when a certain population of poly-adenylated CUTs were attributed to the activity of a novel yeast polymerase, Trf4p. Trf4p was found to associate in a Trf4p/trf5p-Air1p/Air2p-Mtr4 complex (a collective complex referred to as TRAMP: Trf-Air-Mtr4 Polyadenylation complex) which serves as an alternative Poly(A) polymerase to Pap1p within ''S. Cerevisiae''.


Role of Xrn1

Cytoplasmic decay of unstable transcripts can also be attributed to the activity of decapping enzymes and Xrn1. Transcripts that enter the cytoplasm can be targeted by the Dcp1-Dcp2 complex which removes the 5' cap, allowing for the 5' to 3' exoribonuclease Xrn1 to degrade the transcript completely. The role of Dcp1-Dcp2 and Xrn1 in cytoplasmic decay has also been found to participate in the regulation of SUT levels.


Relation with bidirectional promoters

The transcription start sites of CUTs are located within nucleosome free, non-overlapping transcript pairs. These nucleosome free regions of the genome have been frequently correlated with the promoter regions of open reading frames and mRNA transcripts, indicating that a portion of CUTs are located within bidirectional promoters. Additionally,
serial analysis of gene expression Serial Analysis of Gene Expression (SAGE) is a transcriptomic technique used by molecular biologists to produce a snapshot of the messenger RNA population in a sample of interest in the form of small tags that correspond to fragments of those tra ...
has demonstrated that the location of CUT 3' ends can be found in close proximity to the start features of ORFs in both sense and antisense configurations, indicating that the end of CUT sequences lay within the 5' promoter region of expressed proteins. Sense CUTs have been largely found in promoters associated with glucose catabolism genes, while antisense CUTs have no specific associations and are found dispersed in promoters across the entire genome.


SUTs

Stable uncharacterized transcripts or stable unannotated transcripts (SUTs) share certain similar characteristics to CUTs – they can originate from the intergenic region, are non-coding transcripts, and undergo 5' to 3' cytoplasmic degradation. Like CUTs, SUT transcription start sites are also found at nucleosome free regions and are associated with the promoters of protein coding genes. However, SUTs can be observed in both ''Δrrp6'' mutants and wild-type cells, indicating they are only partially degraded by the exosome and are able to escape the Nrd1-Nab3-Sen1 pathway. SUTs are primarily degraded instead by the combined activity of the decapping enzymes Dcp1, Dcp2 and the cytoplasmic exonuclease Xrn1. One class of SUTs has been found to participate in the trans-silencing of a retrotransposon.


Interaction with histones


CUT repression

Within yeast models, it has been observed that the
histone methyltransferase Histone methyltransferases (HMT) are histone-modifying enzymes (e.g., histone-lysine N-methyltransferases and histone-arginine N-methyltransferases), that catalyze the transfer of one, two, or three methyl groups to lysine and arginine residues of ...
Set2 is critical for maintaining proper
methylation In the chemical sciences, methylation denotes the addition of a methyl group on a substrate, or the substitution of an atom (or group) by a methyl group. Methylation is a form of alkylation, with a methyl group replacing a hydrogen atom. These t ...
at histone 3 lysine 36 (H3K36). Loss of Set2 function results in loss of H3K36 methylation and over-acetylation on histone H4, allowing for the expression of several short cryptic transcripts from the genes STE11 and FLO8. In this case, the loss of Set2 allows for the expression of exon-derived CUTs as opposed to intergenic-derived transcripts, showing the role that histones play in controlling intragenic-derived CUTs. In the absence of the transcription elongation factors Spt6 and Spt16, nucleosomes distribute incorrectly across DNA, allowing for
RNA polymerase II RNA polymerase II (RNAP II and Pol II) is a multiprotein complex that transcribes DNA into precursors of messenger RNA (mRNA) and most small nuclear RNA (snRNA) and microRNA. It is one of the three RNAP enzymes found in the nucleus of eukaryoti ...
to access cryptic polymerase sites and erroneously transcribe CUTs. Spt6 is responsible for restoring normal chromatin structure following transcription from RNA polymerase II, and yeast cells with compromised Spt6 function have been found to produce an increased number of CUTs. For instance, RNA polymerase II has been observed to bind incorrectly to the interior initiation region of the FLO8 gene in spt6 mutants, allowing for cryptic transcription to occur due to an erroneous nucleosome distribution.


Histone eviction/recruitment through CUTs

A cryptic transcript located at the promoter of PHO5 that is detectable in ''Δrrp6'' mutants is responsible for increasing the speed of promoter remodeling.
Knock-out A knockout (abbreviated to KO or K.O.) is a fight-ending, winning criterion in several full-contact combat sports, such as boxing, kickboxing, muay thai, mixed martial arts, karate, some forms of taekwondo and other sports involving striking ...
mutants without the ability to transcribe the CUT have about half the rate of histone eviction from the PHO5 promoter compared to wild-type cells, implying that the CUT is responsible for mediating the accessibility of the PHO5 promoter to RNA Polymerase II. It has also been observed in ''S. cerevisiae'' that ''Δrrp6'' and ''Δtrf4'' mutants have repressed transcription of the gene PHO84. ''Δrrp6'' and ''Δtrf4'' cells have stabilized levels of PHO84 antisense transcripts, which serve to recruit the Hda1/2/3
histone deacetylase Histone deacetylases (, HDAC) are a class of enzymes that remove acetyl groups (O=C-CH3) from an ε-N-acetyl lysine amino acid on a histone, allowing the histones to wrap the DNA more tightly. This is important because DNA is wrapped around his ...
complex to the PHO84 gene, effectively silencing transcription and expression through histone deacetylation. In ''Δrrp6'' cells, Hda1 associates with the promoter or coding regions of PHO84 up to five times more often than in wild-type counterparts. Additionally, histone deacetylation activity occurs specifically at the region of PHO84 and Hda1 overlap on histone 3 lysine 18 (H3K18), indicating that the CUT is responsible for recruiting the histone deacetylase. Along with antisense TY1 transcripts, PHO84 antisense transcripts can serve a potential regulatory function in ''S. Cerevisiae''.


PROMPTs

Promoter upstream transcripts (PROMPTs) are found around 1–1.5 kb upstream of human
transcription start site Transcription is the process of copying a segment of DNA into RNA. The segments of DNA transcribed into RNA molecules that can encode proteins are said to produce messenger RNA (mRNA). Other segments of DNA are copied into RNA molecules called ...
s in nongenic regions. Like CUTs, PROMPTs are a form of noncoding RNAs that become detectable in the absence of a degrading exosome enzyme. PROMPTs were first identified in siRNA-silenced hRrp40 human cells, where hRrp40 serves as a core subunit of the human exoribonucleoytic exosome. PROMPT-encoding regions have been found to produce sense and antisense transcripts, both of which are equally targeted by the exosome. In terms of function, ncRNAs with putative regulatory functions have been located to potential PROMPT regions. As a large portion of the human genome has been shown to be transcribed, the existence of PROMPTs helps explain a portion of the non-coding transcripts that are still generated.


Function

Although an endogenous
RNA interference RNA interference (RNAi) is a biological process in which RNA molecules are involved in sequence-specific suppression of gene expression by double-stranded RNA, through translational or transcriptional repression. Historically, RNAi was known by o ...
pathway does not exist within ''S. cerevisiae'', CUTs and SUTs may serve a comparable function. There has been an observed similarity between the suppression of the
transposable element A transposable element (TE, transposon, or jumping gene) is a nucleic acid sequence in DNA that can change its position within a genome, sometimes creating or reversing mutations and altering the cell's genetic identity and genome size. Transp ...
TY1 in yeast and
small interfering RNA Small interfering RNA (siRNA), sometimes known as short interfering RNA or silencing RNA, is a class of double-stranded RNA at first non-coding RNA molecules, typically 20-24 (normally 21) base pairs in length, similar to miRNA, and operating wi ...
activity within plants. In XRN1 mutants, TY1 transcripts decrease in number and TY1 antisense transcripts increase. These antisense TY1 transcripts reduce TY1 transposition activity in a trans manner and mitigates its expression, indicating a potential role for CUTs and SUTs in
epigenetics In biology, epigenetics is the study of stable phenotypic changes (known as ''marks'') that do not involve alterations in the DNA sequence. The Greek prefix '' epi-'' ( "over, outside of, around") in ''epigenetics'' implies features that are "o ...
. Similarly, expression of the ncRNA SRG1 in ''S. Cerevisiae'' represses the transcriptional activity of the SER3 phosphoglycerate dehydrogenase gene. The rapidly degraded antisense transcripts of the gene PHO84 have also been shown to recruit the histone deacetylase Hda1 to the PHO84 gene, effectively suppressing PHO84 expression.


See also

*
Non-coding RNA A non-coding RNA (ncRNA) is a functional RNA molecule that is not translated into a protein. The DNA sequence from which a functional non-coding RNA is transcribed is often called an RNA gene. Abundant and functionally important types of non-c ...


References

{{reflist, 30em RNA