Cryptarithm
   HOME

TheInfoList



OR:

Verbal arithmetic, also known as alphametics, cryptarithmetic, cryptarithm or word addition, is a type of
mathematical game A mathematical game is a game whose rules, strategies, and outcomes are defined by clear mathematics, mathematical parameters. Often, such games have simple rules and match procedures, such as tic-tac-toe and dots and boxes. Generally, mathemati ...
consisting of a mathematical
equation In mathematics, an equation is a mathematical formula that expresses the equality of two expressions, by connecting them with the equals sign . The word ''equation'' and its cognates in other languages may have subtly different meanings; for ...
among unknown
number A number is a mathematical object used to count, measure, and label. The most basic examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can ...
s, whose digits are represented by
letter Letter, letters, or literature may refer to: Characters typeface * Letter (alphabet), a character representing one or more of the sounds used in speech or none in the case of a silent letter; any of the symbols of an alphabet * Letterform, the g ...
s of the alphabet. The goal is to identify the value of each letter. The name can be extended to puzzles that use non-alphabetic symbols instead of letters. The equation is typically a basic operation of
arithmetic Arithmetic is an elementary branch of mathematics that deals with numerical operations like addition, subtraction, multiplication, and division. In a wider sense, it also includes exponentiation, extraction of roots, and taking logarithms. ...
, such as
addition Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol, +) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication, and Division (mathematics), divis ...
,
multiplication Multiplication is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division (mathematics), division. The result of a multiplication operation is called a ''Product (mathem ...
, or division. The classic example, published in the July 1924 issue of ''
The Strand Magazine ''The Strand Magazine'' was a monthly British magazine founded by George Newnes, composed of short fiction and general interest articles. It was published in the United Kingdom from January 1891 to March 1950, running to 711 issues, though the ...
'' by
Henry Dudeney Henry Ernest Dudeney (10 April 1857 – 23 April 1930) was an English author and mathematician who specialised in logic puzzles and mathematical games. He is known as one of the foremost creators of mathematical puzzles. Early life Dudene ...
, is: \begin & & \text & \text & \text & \text \\ + & & \text & \text & \text & \text \\ \hline = & \text & \text & \text & \text & \text \\ \end The solution to this puzzle is O = 0, M = 1, Y = 2, E = 5, N = 6, D = 7, R = 8, and S = 9. Traditionally, each letter should represent a different digit, and (as an ordinary arithmetic notation) the leading digit of a multi-digit number must not be zero. A good puzzle should have one unique solution, and the letters should make up a phrase (as in the example above). Verbal arithmetic can be useful as a motivation and source of exercises in the
teaching Teaching is the practice implemented by a ''teacher'' aimed at transmitting skills (knowledge, know-how, and interpersonal skills) to a learner, a student, or any other audience in the of an educational institution. Teaching is closely related ...
of
elementary algebra Elementary algebra, also known as high school algebra or college algebra, encompasses the basic concepts of algebra. It is often contrasted with arithmetic: arithmetic deals with specified numbers, whilst algebra introduces variable (mathematics ...
.


History

Cryptarithmic puzzles are quite old and their inventor is unknown. An 1864 example in The American Agriculturist disproves the popular notion that it was invented by
Sam Loyd Samuel Loyd (January 30, 1841 – April 10, 1911) was an American chess player, chess composer, puzzle author, and recreational mathematics, recreational mathematician. Loyd was born in Philadelphia but raised in New York City. As a chess comp ...
. The name "cryptarithm" was coined by puzzlist Minos (pseudonym of Simon Vatriquant) in the May 1931 issue of Sphinx, a Belgian magazine of recreational mathematics, and was translated as "cryptarithmetic" by Maurice Kraitchik in 1942. In 1955, J. A. H. Hunter introduced the word "alphametic" to designate cryptarithms, such as Dudeney's, whose letters form meaningful
word A word is a basic element of language that carries semantics, meaning, can be used on its own, and is uninterruptible. Despite the fact that language speakers often have an intuitive grasp of what a word is, there is no consensus among linguist ...
s or phrases.


Types of cryptarithms

Types of cryptarithm include the alphametic, the digimetic, and the skeletal division. ;Alphametic : A type of cryptarithm in which a set of words is written down in the form of a long addition sum or some other mathematical problem. The object is to replace the letters of the alphabet with decimal digits to make a valid arithmetic sum. ;Digimetic : A cryptarithm in which digits are used to represent other digits. ;Skeletal division : A long division in which most or all of the digits are replaced by symbols (usually asterisks) to form a cryptarithm.


Solving cryptarithms

Solving a cryptarithm by hand usually involves a mix of deductions and exhaustive tests of possibilities. For instance the following sequence of deductions solves Dudeney's SEND+MORE = MONEY puzzle above (columns are numbered from right to left): \begin & & \text & \text & \text &\text \\ + & & \text & \text & \text & \text \\ \hline = & \text & \text & \text & \text & \text \\ \end #From column 5, M = 1 since it is the only carry-over possible from the sum of two single digit numbers in column 4. #Since there is a carry in column 5, O must be less than or equal to M (from column 4). But O cannot be equal to M, so O is less than M. Therefore O = 0. #Since O is 1 less than M, S is either 8 or 9 depending on whether there is a carry in column 4. But if there were a carry in column 4 (generated by the addition of column 3), N would be less than or equal to O. This is impossible since O = 0. Therefore there is no carry in column 4 and S = 9. #If there were no carry in column 3 then E = N, which is impossible. Therefore there is a carry and N = E + 1. #If there were no carry in column 2, then ( N + R ) mod 10 = E, and N = E + 1, so ( E + 1 + R ) mod 10 = E which means ( 1 + R ) mod 10 = 0, so R = 9. But S = 9, so there must be a carry in column 2 so R = 8. #To produce a carry in column 2, we must have D + E = 10 + Y. #Y is at least 2 so D + E is at least 12. #The only two pairs of available numbers that sum to at least 12 are (5,7) and (6,7) so either E = 7 or D = 7. #Since N = E + 1, E can't be 7 because then N = 8 = R so D = 7. #E can't be 6 because then N = 7 = D so E = 5 and N = 6. #D + E = 12 so Y = 2. Another example of TO+GO=OUT (source is unknown): \begin & & \text & \text \\ + & & \text & \text \\ \hline = & \text & \text & \text \\ \end # The sum of two biggest two-digit-numbers is 99+99=198. So O=1 and there is a carry in column 3. # Since column 1 is on the right of all other columns, it is impossible for it to have a carry. Therefore 1+1=T, and T=2. # As column 1 had been calculated in the last step, it is known that there isn't a carry in column 2. But, it is also known that there is a carry in column 3 in the first step. Therefore, 2+G≄10. If G is equal to 9, U would equal 1, but this is impossible as O also equals 1. So only G=8 is possible and with 2+8=10+U, U=0. The use of
modular arithmetic In mathematics, modular arithmetic is a system of arithmetic operations for integers, other than the usual ones from elementary arithmetic, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to mo ...
often helps. For example, use of mod-10 arithmetic allows the columns of an addition problem to be treated as
simultaneous equations In mathematics, a set of simultaneous equations, also known as a system of equations or an equation system, is a finite set of equations for which common solutions are sought. An equation system is usually classified in the same manner as single e ...
, while the use of mod-2 arithmetic allows inferences based on the parity of the variables. In
computer science Computer science is the study of computation, information, and automation. Computer science spans Theoretical computer science, theoretical disciplines (such as algorithms, theory of computation, and information theory) to Applied science, ...
, cryptarithms provide good examples to illustrate the brute force method, and algorithms that generate all
permutation In mathematics, a permutation of a set can mean one of two different things: * an arrangement of its members in a sequence or linear order, or * the act or process of changing the linear order of an ordered set. An example of the first mean ...
s of ''m'' choices from ''n'' possibilities. For example, the Dudeney puzzle above can be solved by testing all assignments of eight values among the digits 0 to 9 to the eight letters S,E,N,D,M,O,R,Y, giving 1,814,400 possibilities. They also provide good examples for
backtracking Backtracking is a class of algorithms for finding solutions to some computational problems, notably constraint satisfaction problems, that incrementally builds candidates to the solutions, and abandons a candidate ("backtracks") as soon as it de ...
paradigm of
algorithm In mathematics and computer science, an algorithm () is a finite sequence of Rigour#Mathematics, mathematically rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algo ...
design.


Other information

When generalized to arbitrary bases, the problem of determining if a cryptarithm has a solution is
NP-complete In computational complexity theory, NP-complete problems are the hardest of the problems to which ''solutions'' can be verified ''quickly''. Somewhat more precisely, a problem is NP-complete when: # It is a decision problem, meaning that for any ...
. (The generalization is necessary for the hardness result because in base 10, there are only 10! possible assignments of digits to letters, and these can be checked against the puzzle in linear time.) Alphametics can be combined with other number puzzles such as Sudoku and Kakuro to create cryptic
Sudoku Sudoku (; ; originally called Number Place) is a logic puzzle, logic-based, combinatorics, combinatorial number-placement puzzle. In classic Sudoku, the objective is to fill a 9 Ć— 9 grid with digits so that each column, each row, and ...
and
Kakuro Kakuro or Kakkuro or Kakoro () is a kind of logic puzzle that is often referred to as a mathematical transliteration of the crossword. Kakuro puzzles are regular features in many math-and-logic puzzle publications across the world. In 1966, Cana ...
.


Longest alphametics

Anton Pavlis constructed an alphametic in 1983 with 41 addends: :SO+MANY+MORE+MEN+SEEM+TO+SAY+THAT+ :THEY+MAY+SOON+TRY+TO+STAY+AT+HOME+ :SO+AS+TO+SEE+OR+HEAR+THE+SAME+ONE+ :MAN+TRY+TO+MEET+THE+TEAM+ON+THE+ :MOON+AS+HE+HAS+AT+THE+OTHER+TEN :=TESTS (The answer is that MANYOTHERS=2764195083.)


See also

*
Diophantine equation ''Diophantine'' means pertaining to the ancient Greek mathematician Diophantus. A number of concepts bear this name: *Diophantine approximation In number theory, the study of Diophantine approximation deals with the approximation of real n ...
*
Mathematical puzzle Mathematical puzzles make up an integral part of recreational mathematics. They have specific rules, but they do not usually involve competition between two or more players. Instead, to solve such a puzzle, the solver must find a solution that sati ...
s *
Permutation In mathematics, a permutation of a set can mean one of two different things: * an arrangement of its members in a sequence or linear order, or * the act or process of changing the linear order of an ordered set. An example of the first mean ...
*
Puzzle A puzzle is a game, problem, or toy that tests a person's ingenuity or knowledge. In a puzzle, the solver is expected to put pieces together ( or take them apart) in a logical way, in order to find the solution of the puzzle. There are differe ...
s * Sideways Arithmetic From Wayside School - A book whose plot revolves around these puzzles *
Cryptogram A cryptogram is a type of puzzle that consists of a short piece of encrypted text. Generally the cipher used to encrypt the text is simple enough that the cryptogram can be solved by hand. Substitution ciphers where each letter is replaced by ...


References

*
Martin Gardner Martin Gardner (October 21, 1914May 22, 2010) was an American popular mathematics and popular science writer with interests also encompassing magic, scientific skepticism, micromagic, philosophy, religion, and literatureespecially the writin ...
, ''Mathematics, Magic, and Mystery''. Dover (1956) *
Journal of Recreational Mathematics The ''Journal of Recreational Mathematics'' was an American journal dedicated to recreational mathematics, started in 1968. It had generally been published quarterly by the Baywood Publishing Company, until it ceased publication with the last issue ...
, had a regular alphametics column. * Jack van der Elsen, ''Alphametics''. Maastricht (1998) * Kahan S., Have some sums to solve: The complete alphametics book, Baywood Publishing, (1978) * Brooke M. One Hundred & Fifty Puzzles in Crypt-Arithmetic. New York: Dover, (1963) * Hitesh Tikamchand Jain, ABC of Cryptarithmetic/Alphametics. India(2017)


External links


Solution using Matlab code and tutorial

Cryptarithms
at
cut-the-knot Alexander Bogomolny (January 4, 1948 July 7, 2018) was a Soviet Union, Soviet-born Israeli Americans, Israeli-American mathematician. He was Professor Emeritus of Mathematics at the University of Iowa, and formerly research fellow at the Moscow ...
* * {{MathWorld , urlname=Cryptarithmetic , title=Cryptarithmetic
Alphametics and Cryptarithms


Alphametics solvers


Alphametics Solver!Alphametics Puzzle SolverAndroid app to solve Crypt Arithmatic problemsAlphametic Solver written in PythonAn online tool to create and solve Alphametics and CryptarithmsAn online tool to solve, create, store and retrieve alphametics - over 4000 English alphametics available with solutions
Logic puzzles NP-complete problems