CpG characteristics
Definition
''CpG'' is shorthand for ''5'—C—phosphate—G—3' '', that is, cytosine and guanine separated by only one phosphate group; phosphate links any two nucleosides together in DNA. The ''CpG'' notation is used to distinguish this single-stranded linear sequence from the ''CG'' base-pairing of cytosine and guanine for double-stranded sequences. The CpG notation is therefore to be interpreted as the cytosine being 5 prime to the guanine base. ''CpG'' should not be confused with ''GpC'', the latter meaning that a guanine is followed by a cytosine in the 5' → 3' direction of a single-stranded sequence.Under-representation caused by high mutation rate
CpG dinucleotides have long been observed to occur with a much lower frequency in the sequence of vertebrate genomes than would be expected due to random chance. For example, in the human genome, which has a 42% GC content, a pair of nucleotides consisting of cytosine followed by guanine would be expected to occur of the time. The frequency of CpG dinucleotides in human genomes is less than one-fifth of the expected frequency. This underrepresentation is a consequence of the high mutation rate of methylated CpG sites: the spontaneously occurring deamination of a methylated cytosine results in a thymine, and the resulting G:T mismatched bases are often improperly resolved to A:T; whereas the deamination of unmethylated cytosine results in a uracil, which as a foreign base is quickly replaced by a cytosine by the base excision repair mechanism. The C to T transition rate at methylated CpG sites is ~10 fold higher than at unmethylated sites.Genomic distribution
CpG dinucleotides frequently occur in CpG islands (see definition of CpG islands, below). There are 28,890 CpG islands in the human genome, (50,267 if one includes CpG islands in repeat sequences). This is in agreement with the 28,519 CpG islands found byCpG islands
CpG islands (or CG islands) are regions with a high frequency of CpG sites. Though objective definitions for CpG islands are limited, the usual formal definition is a region with at least 200 bp, a GC percentage greater than 50%, and an observed-to-expected CpG ratio greater than 60%. The "observed-to-expected CpG ratio" can be derived where the observed is calculated as: and the expected as or . Many genes in mammalian genomes have CpG islands associated with the start of the gene ( promoter regions). Because of this, the presence of a CpG island is used to help in the prediction and annotation of genes. In mammalian genomes, CpG islands are typically 300–3,000 base pairs in length, and have been found in or near approximately 40% of promoters of mammalian genes. Over 60% of human genes and almost all house-keeping genes have their promoters embedded in CpG islands. Given the frequency of GC two-nucleotide sequences, the number of CpG dinucleotides is much lower than would be expected. A 2002 study revised the rules of CpG island prediction to exclude other GC-rich genomic sequences such as Alu repeats. Based on an extensive search on the complete sequences of human chromosomes 21 and 22, DNA regions greater than 500 bp were found more likely to be the "true" CpG islands associated with the 5' regions of genes if they had a GC content greater than 55%, and an observed-to-expected CpG ratio of 65%. CpG islands are characterized by CpG dinucleotide content of at least 60% of that which would be statistically expected (~4–6%), whereas the rest of the genome has much lower CpG frequency (~1%), a phenomenon called CG suppression. Unlike CpG sites in theMethylation, silencing, cancer, and aging
CpG islands in promoters
In humans, about 70% of promoters located near the transcription start site of a gene (proximal promoters) contain a CpG island.Methylation of CpG islands stably silences genes
In humans, DNA methylation occurs at the 5 position of the pyrimidine ring of the cytosine residues within CpG sites to form 5-methylcytosines. The presence of multiple methylated CpG sites in CpG islands of promoters causes stable silencing of genes. Silencing of a gene may be initiated by other mechanisms, but this is often followed by methylation of CpG sites in the promoter CpG island to cause the stable silencing of the gene.Promoter CpG hyper/hypo-methylation in cancer
In cancers, loss of expression of genes occurs about 10 times more frequently by hypermethylation of promoter CpG islands than by mutations. For example, in a colorectal cancer there are usually about 3 to 6 driver mutations and 33 to 66 hitchhiker or passenger mutations. In contrast, in one study of colon tumors compared to adjacent normal-appearing colonic mucosa, 1,734 CpG islands were heavily methylated in tumors whereas these CpG islands were not methylated in the adjacent mucosa. Half of the CpG islands were in promoters of annotated protein coding genes, suggesting that about 867 genes in a colon tumor have lost expression due to CpG island methylation. A separate study found an average of 1,549 differentially methylated regions (hypermethylated or hypomethylated) in the genomes of six colon cancers (compared to adjacent mucosa), of which 629 were in known promoter regions of genes. A third study found more than 2,000 genes differentially methylated between colon cancers and adjacent mucosa. UsingDNA repair genes with hyper/hypo-methylated promoters in cancers
DNA repair genes are frequently repressed in cancers due to hypermethylation of CpG islands within their promoters. In head and neck squamous cell carcinomas at least 15 DNA repair genes have frequently hypermethylated promoters; these genes are ''XRCC1, MLH3, PMS1, RAD51B, XRCC3, RAD54B, BRCA1, SHFM1, GEN1, FANCE, FAAP20, SPRTN, SETMAR, HUS1,'' and ''PER1''. About seventeen types of cancer are frequently deficient in one or more DNA repair genes due to hypermethylation of their promoters. As an example, promoter hypermethylation of the DNA repair gene ''Methylation of CpG sites with age
Since age has a strong effect on DNA methylation levels on tens of thousands of CpG sites, one can define a highly accurate biological clock (referred to asUnmethylated sites
Unmethylated CpG dinucleotide sites can be detected by Toll-like receptor 9 ( TLR 9) on plasmacytoid dendritic cells, monocytes, natural killer (NK) cells, andRole of CpG sites in memory
In mammals, DNA methyltransferases (which add methyl groups to DNA bases) exhibit a sequence preference for cytosines within CpG sites. In the mouse brain, 4.2% of all cytosines are methylated, primarily in the context of CpG sites, forming 5mCpG. Most hypermethylated 5mCpG sites increase the repression of associated genes. As reviewed by Duke et al., neuron DNA methylation (repressing expression of particular genes) is altered by neuronal activity. Neuron DNA methylation is required for synaptic plasticity; is modified by experiences; and active DNA methylation and demethylation is required for memory formation and maintenance. In 2016 Halder et al. using mice, and in 2017 Duke et al. using rats, subjected the rodents to contextual fear conditioning, causing an especially strong long-term memory to form. At 24 hours after the conditioning, in the hippocampus brain region of rats, the expression of 1,048 genes was down-regulated (usually associated with 5mCpG in gene promoters) and the expression of 564 genes was up-regulated (often associated with hypomethylation of CpG sites in gene promoters). At 24 hours after training, 9.2% of the genes in the rat genome of hippocampus neurons were differentially methylated. However while the hippocampus is essential for learning new information it does not store information itself. In the mouse experiments of Halder, 1,206 differentially methylated genes were seen in the hippocampus one hour after contextual fear conditioning but these altered methylations were reversed and not seen after four weeks. In contrast with the absence of long-term CpG methylation changes in the hippocampus, substantial differential CpG methylation could be detected in cortical neurons during memory maintenance. There were 1,223 differentially methylated genes in the anterior cingulate cortex of mice four weeks after contextual fear conditioning.Demethylation at CpG sites requires ROS activity
In adult somatic cells DNA methylation typically occurs in the context of CpG dinucleotides ( CpG sites), forming 5-methylcytosine-pG, or 5mCpG. Reactive oxygen species (ROS) may attack guanine at the dinucleotide site, forming 8-hydroxy-2'-deoxyguanosine (8-OHdG), and resulting in a 5mCp-8-OHdG dinucleotide site. The base excision repair enzyme OGG1 targets 8-OHdG and binds to the lesion without immediate excision. OGG1, present at a 5mCp-8-OHdG site recruits TET1 and TET1 oxidizes the 5mC adjacent to the 8-OHdG. This initiates demethylation of 5mC. As reviewed in 2018, in brain neurons, 5mC is oxidized by the ten-eleven translocation (TET) family of dioxygenases ( TET1, TET2, TET3) to generate 5-hydroxymethylcytosine (5hmC). In successive steps TET enzymes further hydroxylate 5hmC to generate 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Thymine-DNA glycosylase (TDG) recognizes the intermediate bases 5fC and 5caC and excises the glycosidic bond resulting in an apyrimidinic site ( AP site). In an alternative oxidative deamination pathway, 5hmC can be oxidatively deaminated by activity-induced cytidine deaminase/apolipoprotein B mRNA editing complex (AID/APOBEC) deaminases to form 5-hydroxymethyluracil (5hmU) or 5mC can be converted to thymine (Thy). 5hmU can be cleaved by TDG, single-strand-selective monofunctional uracil-DNA glycosylase 1 ( SMUG1), Nei-Like DNA Glycosylase 1 (CpG loss
CpG depletion has been observed in the process of DNA methylation of Transposable Elements (TEs) where TEs are not only responsible in the genome expansion but also CpG loss in a host DNA. TEs can be known as "methylation centers" whereby the methylation process, the TEs spreads into the flanking DNA once in the host DNA. This spreading might subsequently result in CpG loss over evolutionary time. Older evolutionary times show a higher CpG loss in the flanking DNA, compared to the younger evolutionary times. Therefore, the DNA methylation can lead eventually to the noticeably loss of CpG sites in neighboring DNA.Genome size and CpG ratio are negatively correlated
Previous studies have confirmed the variety of genomes sizes amount species, where invertebrates and vertebrates have small and big genomes compared to humans. The genome size is strongly connected to the number of transposable elements. However, there is a correlation between the number of TEs methylation versus the CpG amount. This negative correlation consequently causes depletion of CpG due to intergenicAlu elements as promoters of CpG loss
Alu elements are known as the most abundant type of transposable elements. Some studies have used Alu elements as a way to study the idea of which factor is responsible for genome expansion. Alu elements are CpG-rich in a longer amount of sequence, unlike LINEs and ERVs. Alus can work as a methylation center, and the insertion into a host DNA can produce DNA methylation and provoke a spreading into the Flanking DNA area. This spreading is why there are a considerable amount CpG loss and a considerable increase in genome expansion. However, this is a result that is analyzed over time because older Alus elements show more CpG loss in sites of neighboring DNA compared to younger ones.See also
* TLR9, detector of unmethylated CpG sites * DNA methylation ageReferences
{{Portal bar, Biology Molecular genetics DNA