Covalent Organic Frameworks
   HOME

TheInfoList



OR:

Covalent organic frameworks (COFs) are a class of materials that form two- or three-dimensional structures through reactions between organic precursors resulting in strong, covalent bonds to afford porous, stable, and crystalline materials. COFs emerged as a field from the overarching domain of organic materials as researchers optimized both synthetic control and precursor selection. These improvements to coordination chemistry enabled non-porous and amorphous organic materials such as organic
polymers A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic an ...
to advance into the construction of porous, crystalline materials with rigid structures that granted exceptional material stability in a wide range of solvents and conditions. Through the development of reticular chemistry, precise synthetic control was achieved and resulted in ordered, nano-porous structures with highly preferential structural orientation and properties which could be synergistically enhanced and amplified. With judicious selection of COF secondary building units (SBUs), or precursors, the final structure could be predetermined, and modified with exceptional control enabling fine-tuning of emergent properties. This level of control facilitates the COF material to be designed, synthesized, and utilized in various applications, many times with metrics on scale or surpassing that of the current state-of-the-art approaches.


History

While at University of Michigan,
Omar M. Yaghi Omar M. Yaghi ( ar, عمر مونّس ياغي; born February 9, 1965) is the James and Neeltje Tretter Chair Professor of Chemistry at the University of California, Berkeley, the Founding Director of the Berkeley Global Science Institute, and a ...
(currently at UCBerkeley) and Adrien P Cote published the first paper of COFs in 2005, reporting a series of 2D COFs. They reported the design and successful synthesis of COFs by condensation reactions of phenyl di boronic acid (C6H4 (OH)2sub>2) and hexahydroxytriphenylene (C18H6(OH)6). Powder X-ray diffraction studies of the highly crystalline products having
empirical formulas In chemistry, the empirical formula of a chemical compound is the simplest Natural number, whole number ratio of atoms present in a compound. A simple example of this concept is that the empirical formula of sulfur monoxide, or SO, would simply b ...
(C3H2BO)6·(C9H12)1 (COF-1) and C9H4BO2 (COF-5) revealed 2-dimensional expanded porous graphitic layers that have either staggered conformation (COF-1) or eclipsed conformation (COF-5). Their crystal structures are entirely held by strong bonds between B, C, and O atoms to form rigid porous architectures with pore sizes ranging from 7 to 27
Angstrom The angstromEntry "angstrom" in the Oxford online dictionary. Retrieved on 2019-03-02 from https://en.oxforddictionaries.com/definition/angstrom.Entry "angstrom" in the Merriam-Webster online dictionary. Retrieved on 2019-03-02 from https://www.m ...
s. COF-1 and COF-5 exhibit high thermal stability (to temperatures up to 500 to 600 °C), permanent porosity, and high surface areas (711 and 1590 square meters per gram, respectively). The synthesis of 3D COFs has been hindered by longstanding practical and conceptual challenges until it was first achieved in 2007 by
Omar M. Yaghi Omar M. Yaghi ( ar, عمر مونّس ياغي; born February 9, 1965) is the James and Neeltje Tretter Chair Professor of Chemistry at the University of California, Berkeley, the Founding Director of the Berkeley Global Science Institute, and a ...
and colleagues. Unlike 0D and 1D systems, which are soluble, the insolubility of 2D and 3D structures precludes the use of stepwise synthesis, making their isolation in crystalline form very difficult. This first challenge, however, was overcome by judiciously choosing building blocks and using reversible condensation reactions to crystallize COFs.


Structure

Porous crystalline solids consist of secondary building units (SBUs) which assemble to form a periodic and porous framework. An almost infinite number of frameworks can be formed through various SBU combinations leading to unique material properties for applications in separations, storage, and heterogeneous catalysis.Kitagawa, S.; Kitaura, R.; Noro, S.; Functional Porous Coordination Polymers. ''Angew. Chem. Int. Ed.'' 2004, ''43'', pp 2334-2375. Types of porous crystalline solids include
zeolite Zeolites are microporous, crystalline aluminosilicate materials commonly used as commercial adsorbents and catalysts. They mainly consist of silicon, aluminium, oxygen, and have the general formula ・y where is either a metal ion or H+. These pos ...
s, metal-organic frameworks (MOFs), and covalent organic frameworks (COFs). Zeolites are microporous, aluminosilicate minerals commonly used as commercial adsorbents. MOFs are a class of porous polymeric material, consisting of metal ions linked together by organic bridging
ligands In coordination chemistry, a ligand is an ion or molecule (functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's electro ...
and are a new development on the interface between molecular
coordination chemistry A coordination complex consists of a central atom or ion, which is usually metallic and is called the ''coordination centre'', and a surrounding array of bound molecules or ions, that are in turn known as ''ligands'' or complexing agents. Many ...
and materials science.James, S. L.; Metal-organic frameworks. ''Chem. Soc. Rev.'' 2003, ''32'', pp 276-288. COFs are another class of porous polymeric materials, consisting of porous, crystalline, covalent bonds that usually have rigid structures, exceptional thermal stabilities (to temperatures up to 600 °C), are stable in water and low densities. They exhibit permanent porosity with specific surface areas surpassing those of well-known zeolites and porous silicates.Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M.; Porous, Crystalline, Covalent Organic Frameworks. ''Science''. 2005, ''310'', pp 1166-1170.


Secondary building units

The term ‘secondary building unit’ has been used for some time to describe conceptual fragments which can be compared as bricks used to build a house of
zeolite Zeolites are microporous, crystalline aluminosilicate materials commonly used as commercial adsorbents and catalysts. They mainly consist of silicon, aluminium, oxygen, and have the general formula ・y where is either a metal ion or H+. These pos ...
s; in the context of this page it refers to the geometry of the units defined by the points of extension.Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J.; Reticular synthesis and the design of new materials. ''Nature''. 2003, ''423'', pp 705-714.


Reticular synthesis

Reticular synthesis enables facile bottom-up synthesis of the framework materials to introduce precise perturbations in chemical composition, resulting in the highly controlled tunability of framework properties. Through a bottom-up approach, a material is built from atomic or molecular components synthetically as opposed to a top-down approach, which forms a material from the bulk through approaches such as exfoliation, lithography, or other varieties of post-synthetic modification. The bottom-up approach is especially advantageous with respect to materials such as COFs because the synthetic methods are designed to directly result in an extended, highly crosslinked framework that can be tuned with exceptional control at the nanoscale level. Geometrical and dimensional principles govern the framework's resulting topology as the SBUs combine to form predetermined structures. This level of synthetic control has also been termed " molecular engineering", abiding by the concept termed by Arthur R. von Hippel in 1956. It has been established in the literature that, when integrated into an isoreticular framework, such as a COF, properties from monomeric compounds can be synergistically enhanced and amplified. COF materials possess the unique ability for bottom-up reticular synthesis to afford robust, tunable frameworks that synergistically enhance the properties of the precursors, which, in turn, offers many advantages in terms of improved performance in different applications. As a result, the COF material is highly modular and tuned efficiently by varying the SBUs’ identity, length, and functionality depending on the desired property change on the framework scale. Ergo, there exists the ability to introduce diverse functionality directly into the framework scaffold to allow for a variety of functions which would be cumbersome, if not impossible, to achieve through a top-down method, such as lithographic approaches or chemical-based nanofabrication. Through reticular synthesis, it is possible to molecularly engineer modular, framework materials with highly porous scaffolds that exhibit unique electronic, optical, and magnetic properties while simultaneously integrating desired functionality into the COF skeleton. Reticular synthesis is different from retrosynthesis of organic compounds, because the structural integrity and rigidity of the building blocks in reticular synthesis remain unaltered throughout the construction process—an important aspect that could help to fully realize the benefits of design in crystalline solid-state frameworks. Similarly, reticular synthesis should be distinguished from supramolecular assembly, because in the former, building blocks are linked by strong bonds throughout the
crystal A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
.


Synthetic chemistry

Reticular synthesis was used by Yaghi and coworkers in 2005 to construct the first two COFs reported in the literature: COF-1, using a dehydration reaction of benzenediboronic acid (BDBA), and COF-5, via a condensation reaction between hexahydroxytriphenylene (HHTP) and BDBA. These framework scaffolds were interconnected through the formation of boroxine and boronate linkages, respectively, using solvothermal synthetic methods.


COF linkages

Since Yaghi and coworkers’ seminal work in 2005, COF synthesis has expanded to include a wide range of organic connectivity such as boron-, nitrogen-, other atom-containing linkages. The linkages in the figures shown are not comprehensive as other COF linkages exist in the literature, especially for the formation of 3D COFs.


Boron condensation

The most popular COF synthesis route is a boron
condensation Condensation is the change of the state of matter from the gas phase into the liquid phase, and is the reverse of vaporization. The word most often refers to the water cycle. It can also be defined as the change in the state of water vapor to ...
reaction which is a molecular dehydration reaction between boronic acids. In case of COF-1, three boronic acid molecules converge to form a planar six-membered B3O3 ( boroxine) ring with the elimination of three water molecules.


Triazine based trimerization

Another class of high performance polymer frameworks with regular porosity and high surface area is based on triazine materials which can be achieved by dynamic trimerization reaction of simple, cheap, and abundant aromatic nitriles in ionothermal conditions (molten zinc chloride at high temperature (400 °C)). CTF-1 is a good example of this chemistry.Kuhn, P.; Antonietti, M.; Thomas, A.; Porous, Covalent Triazine-Based Frameworks Prepared by Ionothermal Synthesis. ''Angew. Chem. Int. Ed.'' 2008. ''47'', pp 3450-3453.


Imine condensation

The imine
condensation Condensation is the change of the state of matter from the gas phase into the liquid phase, and is the reverse of vaporization. The word most often refers to the water cycle. It can also be defined as the change in the state of water vapor to ...
reaction which eliminates water (exemplified by reacting
aniline Aniline is an organic compound with the formula C6 H5 NH2. Consisting of a phenyl group attached to an amino group, aniline is the simplest aromatic amine In organic chemistry, an aromatic amine is an organic compound consisting of an aroma ...
with
benzaldehyde Benzaldehyde (C6H5CHO) is an organic compound consisting of a benzene ring with a formyl substituent. It is the simplest aromatic aldehyde and one of the most industrially useful. It is a colorless liquid with a characteristic almond-like odor. ...
using an acid catalyst) can be used as a synthetic route to reach a new class of COFs. The 3D COF called COF-300Uribe-Romo, F. J.; Hunt, J. R.; Furukawa, H.; Klck, C.; O'Keeffe, M.; Yaghi, O. M.; A Crystalline Imine-Linked 3-D Porous Covalent Organic Framework. ''J. Am. Chem. Soc''. 2009, ''131'', pp 4570-4571. and the 2D COF named TpOMe-DAQ are good examples of this chemistry. When 1,3,5-triformyl phloroglucinol (TFP) is used as one of the SBUs, two complementary tautomerizations occur (an enol to keto and an imine to enamine) which result in a β-ketoenamine moiety as depicted in the DAAQ-TFP framework. Both DAAQ-TFP and TpOMe-DAQ COFs are stable in acidic aqueous conditions and contain the redox active linker 2,6-diaminoanthroquinone which enables these materials to reversibly store and release electrons within a characteristic potential window. Consequently, both of these COFs have been investigated as electrode materials for potential use in supercapacitors.


Solvothermal synthesis

The solvothermal approach is the most common used in the literature but typically requires long reaction times due to the insolubility of the organic SBUs in nonorganic media and the time necessary to reach thermodynamic COF products.


Templated synthesis

Morphological control on the nanoscale is still limited as COFs lack synthetic control in higher dimensions due to the lack of dynamic chemistry during synthesis. To date, researchers have attempted to establish better control through different synthetic methods such as solvothermal synthesis, interface-assisted synthesis, solid templation as well as seeded growth. First one of the precursors is deposited onto the solid support followed by the introduction of the second precursor in vapor form. This results in the deposition of the COF as a
thin film A thin film is a layer of material ranging from fractions of a nanometer (monolayer) to several micrometers in thickness. The controlled synthesis of materials as thin films (a process referred to as deposition) is a fundamental step in many ap ...
on the solid support.


Properties


Porosity

A defining advantage of COFs is the exceptional porosity that results from the substitution of analogous SBUs of varying sizes. Pore sizes range from 7-23 Å and feature a diverse range of shapes and dimensionalities that remain stable during the evacuation of solvent. The rigid scaffold of the COF structure enables the material to be evacuated of solvent and retain its structure, resulting in high surface areas as seen by the Brunauer–Emmett–Teller analysis. This high surface area to volume ratio and incredible stability enables the COF structure to serve as exceptional materials for gas storage and separation.


Crystallinity

There are several COF single crystals synthesized to date. There are a variety of techniques employed to improve crystallinity of COFs. The use of modulators, monofunctional version of precursors, serve to slow the COF formation to allow for more favorable balance between kinetic and thermodynamic control, hereby enabling crystalline growth. This was employed by Yaghi and coworkers for 3D imine-based COFs (COF-300, COF 303, LZU-79, and LZU-111). However, the vast majority of COFs are not able to crystallize into single crystals but instead are insoluble powders. The improvement of crystallinity of these polycrystalline materials can be improved through tuning the reversibility of the linkage formation to allow for corrective particle growth and self-healing of defects that arise during COF formation.


Conductivity

Integration of SBUs into a covalent framework results in the synergistic emergence of conductivities much greater than the monomeric values. The nature of the SBUs can improve conductivity. Through the use of highly conjugated linkers throughout the COF scaffold, the material can be engineered to be fully conjugated, enabling high charge carrier density as well as through- and in-plane charge transport. For instance, Mirica and coworkers synthesized a COF material (NiPc-Pyr COF) from nickel phthalocyanine (NiPc) and pyrene organic linkers that had a conductivity of 2.51 x 10−3 S/m, which was several orders of magnitude larger than the undoped molecular NiPc, 10−11 S/m. A similar COF structure made by Jiang and coworkers, CoPc-Pyr COF, exhibited a conductivity of 3.69 x 10−3 S/m. In both previously mentioned COFs, the 2D lattice allows for full π-conjugation in the x and y directions as well as π-conduction along the z axis due to the fully conjugated, aromatic scaffold and π-π stacking, respectively. Emergent
electrical conductivity Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allow ...
in COF structures is especially important for applications such as catalysis and energy storage where quick and efficient charge transport is required for optimal performance.


Characterization

There exists a wide range of characterization methods for COF materials. There are several COF single crystals synthesized to date. For these highly crystalline materials,
X-ray diffraction X-ray crystallography is the experimental science determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract into many specific directions. By measuring the angles ...
(XRD) is a powerful tool capable of determining COF crystal structure. The majority of COF materials suffer from decreased crystallinity so
powder X-ray diffraction Powder diffraction is a scientific technique using X-ray, neutron, or electron diffraction on powder or microcrystalline samples for structural characterization of materials. An instrument dedicated to performing such powder measurements is cal ...
(PXRD) is used. In conjunction with simulated powder packing models, PXRD can determine COF
crystal structure In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions or molecules in a crystal, crystalline material. Ordered structures occur from the intrinsic nature of the constituent particles to form symmetric pat ...
. In order to verify and analyze COF linkage formation, various techniques can be employed such as
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around ...
(IR) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. Precursor and COF IR spectra enables comparison between vibrational peaks to ascertain that certain key bonds present in the COF linkages appear and that peaks of precursor functional groups disappear. In addition, solid-state NMR enables probing of linkage formation as well and is well suited for large, insoluble materials like COFs. Gas adsorption-desorption studies quantify the porosity of the material via calculation of the Brunauer–Emmett–Teller (BET) surface area and pore diameter from gas adsorption isotherms. Electron imagine techniques such as scanning electron microscope (SEM), and
transmission electron microscopy Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a g ...
(TEM) can resolve surface structure and morphology, and microstructural information, respectively. Scanning tunneling microscope (STM) and
atomic force microscopy Atomic force microscopy (AFM) or scanning force microscopy (SFM) is a very-high-resolution type of scanning probe microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the op ...
(AFM) have also been used to characterize COF microstructural information as well. Additionally, methods like X-ray photoelectron spectroscopy (XPS),
inductively coupled plasma mass spectrometry Inductively coupled plasma mass spectrometry (ICP-MS) is a type of mass spectrometry that uses an inductively coupled plasma to ionize the sample. It atomizes the sample and creates atomic and small polyatomic ions, which are then detected. It is ...
(ICP-MS), and combustion analysis can be used to identify elemental composition and ratios.


Applications


Gas storage and separation

Due to the exceptional porosity of COFs, they have been used extensively in the storage and separation of gases such as hydrogen, methane, etc.


Hydrogen storage

Omar M. Yaghi Omar M. Yaghi ( ar, عمر مونّس ياغي; born February 9, 1965) is the James and Neeltje Tretter Chair Professor of Chemistry at the University of California, Berkeley, the Founding Director of the Berkeley Global Science Institute, and a ...
and William A. Goddard III reported COFs as exceptional hydrogen storage materials. They predicted the highest excess H2 uptakes at 77 K are 10.0 wt % at 80 bar for COF-105, and 10.0 wt % at 100 bar for COF-108, which have higher
surface area The surface area of a solid object is a measure of the total area that the surface of the object occupies. The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc ...
and free volume, by grand canonical Monte Carlo (GCMC) simulations as a function of temperature and pressure. This is the highest value reported for associative H2 storage of any material. Thus 3D COFs are most promising new candidates in the quest for practical H2 storage materials.Han, S.; Hurukawa, H.; Yaghi, O. M.; Goddard, W. A.; Covalent Organic Frameworks as Exceptional Hydrogen Storage Materials. ''J. Am. Chem. Soc.'' 2008, ''130'', pp 11580–11581. In 2012, the lab of William A. Goddard III reported the uptake for COF102, COF103, and COF202 at 298 K and they also proposed new strategies to obtain higher interaction with H2. Such strategy consists of metalating the COF with alkali metals such as Li. These complexes composed of Li, Na and K with benzene ligands (such as 1,3,5-benzenetribenzoate, the ligand used in MOF-177) have been synthesized by Krieck et al.Krieck, S.; Gorls, H.; Westerhausen, M., Alkali Metal-Stabilized 1,3,5-Triphenylbenzene Monoanions: Synthesis and Characterization of the Lithium, Sodium, and Potassium Complexes. ''Organometallics''. 2010, ''29'', pp 6790–6800. and Goddard showed that the THF is important to their stability. If the metalation with alkali meals is performed in the COFs, Goddard et al. calculated that some COFs can reach 2010 DOE gravimetric target in delivery units at 298 K of 4.5 wt %: COF102-Li (5.16 wt %), COF103-Li (4.75 wt %), COF102-Na (4.75 wt %) and COF103-Na (4.72 wt %). COFs also perform better in delivery units than MOFs because the best volumetric performance is for COF102-Na (24.9), COF102-Li (23.8), COF103-Na (22.8), and COF103-Li (21.7), all using delivery g H2/L units for 1–100 bar. These are the highest gravimetric molecular hydrogen uptakes for a porous material under these thermodynamic conditions.


Methane storage

Omar M. Yaghi Omar M. Yaghi ( ar, عمر مونّس ياغي; born February 9, 1965) is the James and Neeltje Tretter Chair Professor of Chemistry at the University of California, Berkeley, the Founding Director of the Berkeley Global Science Institute, and a ...
and William A. Goddard III also reported COFs as exceptional methane storage materials. The best COF in terms of total volume of CH4 per unit volume COF adsorbent is COF-1, which can store 195 v/v at 298 K and 30 bar, exceeding the U.S. Department of Energy target for CH4 storage of 180 v/v at 298 K and 35 bar. The best COFs on a delivery amount basis (volume adsorbed from 5 to 100 bar) are COF-102 and COF-103 with values of 230 and 234 v(STP: 298 K, 1.01 bar)/v, respectively, making these promising materials for practical methane storage. More recently, new COFs with better delivery amount have been designed in the lab of William A. Goddard III, and they have been shown to be stable and overcome the DOE target in delivery basis. COF-103-Eth-trans and COF-102-Ant, are found to exceed the DOE target of 180 v(STP)/v at 35 bar for methane storage. They reported that using thin vinyl bridging groups aids performance by minimizing the interaction methane-COF at low pressure.


Gas separation

In addition to storage, COF materials are exceptional at gas separation. For instance, COFs like imine-linked COF LZU1 and azine-linked COF ACOF-1 were used as a bilayer membrane for the selective separation of the following mixtures: H2/CO2, H2/N2, and H2/CH4. The COFs outperformed molecular sieves due to the inherent thermal and operational stability of the structures. It has also been shown that COFs inherently act as adsorbents, adhering to the gaseous molecules to enable storage and separation.


Optical properties

A highly ordered π-conjugation TP-COF, consisting of
pyrene Pyrene is a polycyclic aromatic hydrocarbon (PAH) consisting of four fused benzene rings, resulting in a flat aromatic system. The chemical formula is . This yellow solid is the smallest peri-fused PAH (one where the rings are fused through mor ...
and
triphenylene Triphenylene is an organic compound with the formula (C6H4)3. A flat polycyclic aromatic hydrocarbon (PAH), it consists of four fused benzene rings. Triphenylene has delocalized 18-''π''-electron systems based on a planar structure, correspondin ...
functionalities alternately linked in a mesoporous hexagonal skeleton, is highly luminescent, harvests a wide
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tro ...
range of photons, and allows energy transfer and migration. Furthermore, TP-COF is electrically conductive and capable of repetitive on–off current switching at room temperature.Shun, W.; Jia, G.; Jangbae, K.; Hyotcherl, I.; Donglin, J.; A Belt-Shaped, Blue Luminescent, and Semiconducting Covalent Organic Framework. ''Angew. Chem. Int. Ed.'' 2008, ''47'', pp 8826-8830.


Porosity/surface-area effects

Most studies to date have focused on the development of synthetic methodologies with the aim of maximizing pore size and
surface area The surface area of a solid object is a measure of the total area that the surface of the object occupies. The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc ...
for gas storage. That means the functions of COFs have not yet been well explored, but COFs can be used as
catalyst Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
s, or for gas separation, etc.


Carbon capture

In 2015 the use of highly porous, catalyst-decorated COFs for converting
carbon dioxide Carbon dioxide (chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transpar ...
into
carbon monoxide Carbon monoxide (chemical formula CO) is a colorless, poisonous, odorless, tasteless, flammable gas that is slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simple ...
was reported. MOF under solvent-free conditions can also be used for catalytic activity in the cycloaddition of CO2 and epoxides into cyclic organic carbonates with enhanced catalyst recyclability.


Sensing

Due to defining molecule-framework interactions, COFs can be used as chemical sensors in a wide range of environments and applications. Properties of the COF change when their functionalities interact with various analytes enabling the materials to serve as devices in various conditions: as chemiresistive sensors, as well as electrochemical sensors for small molecules.


Catalysis

Due to the ability to introduce diverse functionality into COFs’ structure, catalytic sites can be fine-tuned in conjunction with other advantageous properties like conductivity and stability to afford efficient and selective catalysts. COFs have been used as heterogeneous catalysts in organic, electrochemical, as well as photochemical reactions.


Electrocatalysis

COFs have been studied as non-metallic
electrocatalyst An electrocatalyst is a catalyst that participates in electrochemical reactions. Electrocatalysts are a specific form of catalysts that function at electrode surfaces or, most commonly, may be the electrode surface itself. An electrocatalyst ...
s for energy-related catalysis, including carbon dioxide electro-reduction and
water splitting Water splitting is the chemical reaction in which water is broken down into oxygen and hydrogen: :2 H2O → 2 H2 + O2 Efficient and economical water splitting would be a technological breakthrough that could underpin a hydrogen economy, base ...
reaction. However, such researches are still in the very early stage. Most of the efforts have been focusing on solving the key issues, such as conductivity, stability in electrochemical processes.


Energy storage

A few COFs possess the stability and conductivity necessary to perform well in energy storage applications like
lithium-ion batteries A lithium-ion or Li-ion battery is a type of rechargeable battery which uses the reversible reduction of lithium ions to store energy. It is the predominant battery type used in portable consumer electronics and electric vehicles. It also se ...
, and various different metal-ion batteries and
cathode A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. A conventional current describes the direction in whi ...
s.


Water filtration

A prototype 2 nanometer thick COF layer on a graphene substrate was used to filter dye from industrial wastewater. Once full, the COF can be cleaned and reused.


See also

* Reticular chemistry *
Conjugated microporous polymer Conjugated microporous polymers (CMPs) are a sub-class of porous materials that are related to structures such as zeolites, metal-organic frameworks, and covalent organic frameworks, but are amorphous in nature, rather than crystalline. CMPs are a ...
*
Omar M. Yaghi Omar M. Yaghi ( ar, عمر مونّس ياغي; born February 9, 1965) is the James and Neeltje Tretter Chair Professor of Chemistry at the University of California, Berkeley, the Founding Director of the Berkeley Global Science Institute, and a ...
* Metal-organic framework *
Zeolite Zeolites are microporous, crystalline aluminosilicate materials commonly used as commercial adsorbents and catalysts. They mainly consist of silicon, aluminium, oxygen, and have the general formula ・y where is either a metal ion or H+. These pos ...


References


External links

{{Scholia
Welcome to the Yaghi Laboratory Website
Organic compounds