Cotangent Bundle
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, especially
differential geometry Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multili ...
, the cotangent bundle of a
smooth manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ma ...
is the
vector bundle In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to every po ...
of all the
cotangent space In differential geometry, the cotangent space is a vector space associated with a point x on a smooth (or differentiable) manifold \mathcal M; one can define a cotangent space for every point on a smooth manifold. Typically, the cotangent space, T ...
s at every point in the manifold. It may be described also as the
dual bundle In mathematics, the dual bundle is an operation on vector bundles extending the operation of duality for vector spaces. Definition The dual bundle of a vector bundle \pi: E \to X is the vector bundle \pi^*: E^* \to X whose fibers are the dual sp ...
to the
tangent bundle In differential geometry, the tangent bundle of a differentiable manifold M is a manifold TM which assembles all the tangent vectors in M . As a set, it is given by the disjoint unionThe disjoint union ensures that for any two points and of ...
. This may be generalized to
categories Category, plural categories, may refer to: Philosophy and general uses *Categorization, categories in cognitive science, information science and generally *Category of being *Categories (Aristotle), ''Categories'' (Aristotle) *Category (Kant) ...
with more structure than smooth manifolds, such as
complex manifolds In differential geometry and complex geometry, a complex manifold is a manifold with an atlas of charts to the open unit disc in \mathbb^n, such that the transition maps are holomorphic. The term complex manifold is variously used to mean a com ...
, or (in the form of cotangent sheaf)
algebraic varieties Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Mo ...
or schemes. In the smooth case, any Riemannian metric or symplectic form gives an isomorphism between the cotangent bundle and the tangent bundle, but they are not in general isomorphic in other categories.


Formal Definition

Let ''M'' be a
smooth manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ma ...
and let ''M''×''M'' be the
Cartesian product In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is : A\ti ...
of ''M'' with itself. The diagonal mapping Δ sends a point ''p'' in ''M'' to the point (''p'',''p'') of ''M''×''M''. The image of Δ is called the diagonal. Let \mathcal be the
sheaf Sheaf may refer to: * Sheaf (agriculture), a bundle of harvested cereal stems * Sheaf (mathematics), a mathematical tool * Sheaf toss, a Scottish sport * River Sheaf, a tributary of River Don in England * ''The Sheaf'', a student-run newspaper se ...
of germs of smooth functions on ''M''×''M'' which vanish on the diagonal. Then the quotient sheaf \mathcal/\mathcal^2 consists of equivalence classes of functions which vanish on the diagonal modulo higher order terms. The
cotangent sheaf In algebraic geometry, given a morphism ''f'': ''X'' → ''S'' of schemes, the cotangent sheaf on ''X'' is the sheaf of \mathcal_X-modules \Omega_ that represents (or classifies) ''S''-derivations in the sense: for any \mathcal_X-modules ''F'', th ...
is defined as the
pullback In mathematics, a pullback is either of two different, but related processes: precomposition and fiber-product. Its dual is a pushforward. Precomposition Precomposition with a function probably provides the most elementary notion of pullback: i ...
of this sheaf to ''M'': :\Gamma T^*M=\Delta^*\left(\mathcal/\mathcal^2\right). By
Taylor's theorem In calculus, Taylor's theorem gives an approximation of a ''k''-times differentiable function around a given point by a polynomial of degree ''k'', called the ''k''th-order Taylor polynomial. For a smooth function, the Taylor polynomial is the t ...
, this is a
locally free sheaf In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with refer ...
of modules with respect to the sheaf of germs of smooth functions of ''M''. Thus it defines a
vector bundle In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to every po ...
on ''M'': the cotangent bundle.
Smooth Smooth may refer to: Mathematics * Smooth function, a function that is infinitely differentiable; used in calculus and topology * Smooth manifold, a differentiable manifold for which all the transition maps are smooth functions * Smooth algebrai ...
sections Section, Sectioning or Sectioned may refer to: Arts, entertainment and media * Section (music), a complete, but not independent, musical idea * Section (typography), a subdivision, especially of a chapter, in books and documents ** Section sig ...
of the cotangent bundle are called (differential)
one-form In differential geometry, a one-form on a differentiable manifold is a smooth section of the cotangent bundle. Equivalently, a one-form on a manifold M is a smooth mapping of the total space of the tangent bundle of M to \R whose restriction to ea ...
s.


Contravariance Properties

A smooth morphism \phi\colon M\to N of manifolds, induces a pullback sheaf \phi^*T^*N on ''M''. There is an induced map of vector bundles \phi^*(T^*N)\to T^*M.


Examples

The tangent bundle of the vector space \mathbb^n is T\,\mathbb^n = \mathbb^n\times \mathbb^n, and the cotangent bundle is T^*\mathbb^n = \mathbb^n\times (\mathbb^n)^*, where (\mathbb^n)^* denotes the
dual space In mathematics, any vector space ''V'' has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on ''V'', together with the vector space structure of pointwise addition and scalar multiplication by const ...
of covectors, linear functions v^*:\mathbb^n\to \mathbb. Given a smooth manifold M\subset \mathbb^n embedded as a
hypersurface In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension , which is embedded in an ambient space of dimension , generally a Euclidean ...
represented by the vanishing locus of a function f\in C^\infty (\mathbb^n), with the condition that \nabla f \neq 0, the tangent bundle is :TM = \, where df_x \in T^*_xM is the
directional derivative In mathematics, the directional derivative of a multivariable differentiable (scalar) function along a given vector v at a given point x intuitively represents the instantaneous rate of change of the function, moving through x with a velocity s ...
df_x(v) = \nabla\! f(x)\cdot v. By definition, the cotangent bundle in this case is :T^*M = \bigl\, where T^*_xM=\^*. Since every covector v^* \in T^*_xM corresponds to a unique vector v \in T_xM for which v^*(u) = v \cdot u, for an arbitrary u \in T_xM, :T^*M = \bigl\.


The cotangent bundle as phase space

Since the cotangent bundle ''X'' = ''T''*''M'' is a
vector bundle In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to every po ...
, it can be regarded as a manifold in its own right. Because at each point the tangent directions of ''M'' can be paired with their dual covectors in the fiber, ''X'' possesses a canonical one-form θ called the
tautological one-form In mathematics, the tautological one-form is a special 1-form defined on the cotangent bundle T^Q of a manifold Q. In physics, it is used to create a correspondence between the velocity of a point in a mechanical system and its momentum, thus p ...
, discussed below. The
exterior derivative On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. The exterior derivative was first described in its current form by Élie Cartan in 1899. The res ...
of θ is a symplectic 2-form, out of which a non-degenerate
volume form In mathematics, a volume form or top-dimensional form is a differential form of degree equal to the differentiable manifold dimension. Thus on a manifold M of dimension n, a volume form is an n-form. It is an element of the space of sections of the ...
can be built for ''X''. For example, as a result ''X'' is always an
orientable In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "counterclockwise". A space is ...
manifold (the tangent bundle ''TX'' is an orientable vector bundle). A special set of
coordinates In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is sig ...
can be defined on the cotangent bundle; these are called the canonical coordinates. Because cotangent bundles can be thought of as symplectic manifolds, any real function on the cotangent bundle can be interpreted to be a
Hamiltonian Hamiltonian may refer to: * Hamiltonian mechanics, a function that represents the total energy of a system * Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system ** Dyall Hamiltonian, a modified Hamiltonian ...
; thus the cotangent bundle can be understood to be a
phase space In dynamical system theory, a phase space is a space in which all possible states of a system are represented, with each possible state corresponding to one unique point in the phase space. For mechanical systems, the phase space usually ...
on which
Hamiltonian mechanics Hamiltonian mechanics emerged in 1833 as a reformulation of Lagrangian mechanics. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities \dot q^i used in Lagrangian mechanics with (generalized) ''momenta ...
plays out.


The tautological one-form

The cotangent bundle carries a canonical one-form θ also known as the symplectic potential, ''Poincaré'' ''1''-form, or ''Liouville'' ''1''-form. This means that if we regard ''T''*''M'' as a manifold in its own right, there is a canonical
section Section, Sectioning or Sectioned may refer to: Arts, entertainment and media * Section (music), a complete, but not independent, musical idea * Section (typography), a subdivision, especially of a chapter, in books and documents ** Section sign ...
of the vector bundle ''T''*(''T''*''M'') over ''T''*''M''. This section can be constructed in several ways. The most elementary method uses local coordinates. Suppose that ''x''''i'' are local coordinates on the base manifold ''M''. In terms of these base coordinates, there are fibre coordinates ''p''''i'': a one-form at a particular point of ''T''*''M'' has the form ''p''''i'' ''dx''''i'' (
Einstein summation convention In mathematics, especially the usage of linear algebra in Mathematical physics, Einstein notation (also known as the Einstein summation convention or Einstein summation notation) is a notational convention that implies summation over a set of i ...
implied). So the manifold ''T''*''M'' itself carries local coordinates (''x''''i'', ''p''''i'') where the ''x'''s are coordinates on the base and the ''p's'' are coordinates in the fibre. The canonical one-form is given in these coordinates by :\theta_=\sum_^n p_i \, dx^i. Intrinsically, the value of the canonical one-form in each fixed point of ''T*M'' is given as a
pullback In mathematics, a pullback is either of two different, but related processes: precomposition and fiber-product. Its dual is a pushforward. Precomposition Precomposition with a function probably provides the most elementary notion of pullback: i ...
. Specifically, suppose that is the
projection Projection, projections or projective may refer to: Physics * Projection (physics), the action/process of light, heat, or sound reflecting from a surface to another in a different direction * The display of images by a projector Optics, graphic ...
of the bundle. Taking a point in ''T''''x''*''M'' is the same as choosing of a point ''x'' in ''M'' and a one-form ω at ''x'', and the tautological one-form θ assigns to the point (''x'', ω) the value :\theta_=\pi^*\omega. That is, for a vector ''v'' in the tangent bundle of the cotangent bundle, the application of the tautological one-form θ to ''v'' at (''x'', ω) is computed by projecting ''v'' into the tangent bundle at ''x'' using and applying ω to this projection. Note that the tautological one-form is not a pullback of a one-form on the base ''M''.


Symplectic form

The cotangent bundle has a canonical symplectic 2-form on it, as an
exterior derivative On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. The exterior derivative was first described in its current form by Élie Cartan in 1899. The res ...
of the
tautological one-form In mathematics, the tautological one-form is a special 1-form defined on the cotangent bundle T^Q of a manifold Q. In physics, it is used to create a correspondence between the velocity of a point in a mechanical system and its momentum, thus p ...
, the symplectic potential. Proving that this form is, indeed, symplectic can be done by noting that being symplectic is a local property: since the cotangent bundle is locally trivial, this definition need only be checked on \mathbb^n \times \mathbb^n. But there the one form defined is the sum of y_i\,dx_i, and the differential is the canonical symplectic form, the sum of dy_i \land dx_i.


Phase space

If the manifold M represents the set of possible positions in a
dynamical system In mathematics, a dynamical system is a system in which a Function (mathematics), function describes the time dependence of a Point (geometry), point in an ambient space. Examples include the mathematical models that describe the swinging of a ...
, then the cotangent bundle \!\,T^\!M can be thought of as the set of possible ''positions'' and ''momenta''. For example, this is a way to describe the
phase space In dynamical system theory, a phase space is a space in which all possible states of a system are represented, with each possible state corresponding to one unique point in the phase space. For mechanical systems, the phase space usually ...
of a pendulum. The state of the pendulum is determined by its position (an angle) and its momentum (or equivalently, its velocity, since its mass is constant). The entire state space looks like a cylinder, which is the cotangent bundle of the circle. The above symplectic construction, along with an appropriate
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat a ...
function, gives a complete determination of the physics of system. See
Hamiltonian mechanics Hamiltonian mechanics emerged in 1833 as a reformulation of Lagrangian mechanics. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities \dot q^i used in Lagrangian mechanics with (generalized) ''momenta ...
and the article on
geodesic flow In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. ...
for an explicit construction of the Hamiltonian equations of motion.


See also

*
Legendre transformation In mathematics, the Legendre transformation (or Legendre transform), named after Adrien-Marie Legendre, is an involutive transformation on real-valued convex functions of one real variable. In physical problems, it is used to convert functions of ...


References

* * * {{Manifolds Vector bundles Differential topology Tensors