Convective Thunderstorm
   HOME

TheInfoList



OR:

A thunderstorm, also known as an electrical storm or a lightning storm, is a storm characterized by the presence of
lightning Lightning is a naturally occurring electrostatic discharge during which two electric charge, electrically charged regions, both in the atmosphere or with one on the land, ground, temporarily neutralize themselves, causing the instantaneous ...
and its acoustic effect on the
Earth's atmosphere The atmosphere of Earth is the layer of gases, known collectively as air, retained by Earth's gravity that surrounds the planet and forms its planetary atmosphere. The atmosphere of Earth protects life on Earth by creating pressure allowing for ...
, known as thunder. Relatively weak thunderstorms are sometimes called thundershowers. Thunderstorms occur in a type of cloud known as a cumulonimbus. They are usually accompanied by
strong winds ''Strong Winds'' (German: ''Windstärke 9. Die Geschichte einer reichen Erbin'') is a 1924 German silent film directed by Reinhold Schünzel and starring Maria Kamradek, Alwin Neuss and Albert Bennefeld.Das Ufa-Buch p.126 The film's sets were d ...
and often produce heavy rain and sometimes
snow Snow comprises individual ice crystals that grow while suspended in the atmosphere—usually within clouds—and then fall, accumulating on the ground where they undergo further changes. It consists of frozen crystalline water throughout ...
, sleet, or
hail Hail is a form of solid precipitation. It is distinct from ice pellets (American English "sleet"), though the two are often confused. It consists of balls or irregular lumps of ice, each of which is called a hailstone. Ice pellets generally fal ...
, but some thunderstorms produce little precipitation or no precipitation at all. Thunderstorms may line up in a series or become a
rainband A rainband is a cloud and precipitation structure associated with an area of rainfall which is significantly elongated. Rainbands can be stratiform or convective, and are generated by differences in temperature. When noted on weather radar ima ...
, known as a squall line. Strong or severe thunderstorms include some of the most dangerous weather phenomena, including large hail, strong winds, and
tornado A tornado is a violently rotating column of air that is in contact with both the surface of the Earth and a cumulonimbus cloud or, in rare cases, the base of a cumulus cloud. It is often referred to as a twister, whirlwind or cyclone, altho ...
es. Some of the most persistent severe thunderstorms, known as supercells, rotate as do cyclones. While most thunderstorms move with the mean wind flow through the layer of the
troposphere The troposphere is the first and lowest layer of the atmosphere of the Earth, and contains 75% of the total mass of the planetary atmosphere, 99% of the total mass of water vapour and aerosols, and is where most weather phenomena occur. From ...
that they occupy, vertical wind shear sometimes causes a deviation in their course at a right angle to the wind shear direction. Thunderstorms result from the rapid upward movement of warm, moist air, sometimes along a
front Front may refer to: Arts, entertainment, and media Films * ''The Front'' (1943 film), a 1943 Soviet drama film * ''The Front'', 1976 film Music * The Front (band), an American rock band signed to Columbia Records and active in the 1980s and e ...
. However, some kind of cloud forcing, whether it is a front,
shortwave Shortwave radio is radio transmission using shortwave (SW) radio frequencies. There is no official definition of the band, but the range always includes all of the high frequency band (HF), which extends from 3 to 30 MHz (100 to 10 me ...
trough, or another system is needed for the air to rapidly accelerate upward. As the warm, moist air moves upward, it cools, condenses, and forms a cumulonimbus cloud that can reach heights of over . As the rising air reaches its
dew point The dew point is the temperature to which air must be cooled to become saturated with water vapor, assuming constant air pressure and water content. When cooled below the dew point, moisture capacity is reduced and airborne water vapor will cond ...
temperature, water vapor condenses into water droplets or ice, reducing pressure locally within the thunderstorm cell. Any precipitation falls the long distance through the clouds towards the Earth's surface. As the droplets fall, they collide with other droplets and become larger. The falling droplets create a downdraft as it pulls cold air with it, and this cold air spreads out at the Earth's surface, occasionally causing strong winds that are commonly associated with thunderstorms. Thunderstorms can form and develop in any geographic location but most frequently within the
mid-latitude The middle latitudes (also called the mid-latitudes, sometimes midlatitudes, or moderate latitudes) are a spatial region on Earth located between the Tropic of Cancer (latitudes 23°26'22") to the Arctic Circle (66°33'39"), and Tropic of Caprico ...
, where warm, moist air from tropical latitudes collides with cooler air from polar latitudes. Thunderstorms are responsible for the development and formation of many severe weather phenomena, which can be potentially hazardous. Damage that results from thunderstorms is mainly inflicted by downburst winds, large hailstones, and flash flooding caused by heavy
precipitation In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravitational pull from clouds. The main forms of precipitation include drizzle, rain, sleet, snow, ice pellets, graupel and hail. ...
. Stronger thunderstorm cells are capable of producing tornadoes and
waterspout A waterspout is an intense columnar vortex (usually appearing as a funnel cloud, funnel-shaped cloud) that occurs over a body of water. Some are connected to a cumulus congestus cloud, some to a cumuliform cloud and some to a cumulonimbus clou ...
s. There are three types of thunderstorms: single-cell, multi-cell, and supercell. Supercell thunderstorms are the strongest and most severe. Mesoscale convective systems formed by favorable vertical wind shear within the tropics and
subtropics The subtropical zones or subtropics are geographical and climate zones to the north and south of the tropics. Geographically part of the temperate zones of both hemispheres, they cover the middle latitudes from to approximately 35° north and ...
can be responsible for the development of
hurricane A tropical cyclone is a rapidly rotating storm system characterized by a low-pressure center, a closed low-level atmospheric circulation, strong winds, and a spiral arrangement of thunderstorms that produce heavy rain and squalls. Depend ...
s. Dry thunderstorms, with no precipitation, can cause the outbreak of
wildfire A wildfire, forest fire, bushfire, wildland fire or rural fire is an unplanned, uncontrolled and unpredictable fire in an area of Combustibility and flammability, combustible vegetation. Depending on the type of vegetation present, a wildfire ...
s from the heat generated from the
cloud-to-ground lightning Lightning is a naturally occurring electrostatic discharge during which two electric charge, electrically charged regions, both in the atmosphere or with one on the land, ground, temporarily neutralize themselves, causing the instantaneous ...
that accompanies them. Several means are used to study thunderstorms:
weather radar Weather radar, also called weather surveillance radar (WSR) and Doppler weather radar, is a type of radar used to locate precipitation, calculate its motion, and estimate its type (rain, snow, hail etc.). Modern weather radars are mostly puls ...
,
weather station A weather station is a facility, either on land or sea, with instruments and equipment for measuring atmospheric conditions to provide information for weather forecasts and to study the weather and climate. The measurements taken include tempera ...
s, and video photography. Past civilizations held various myths concerning thunderstorms and their development as late as the 18th century. Beyond the Earth's atmosphere, thunderstorms have also been observed on the planets of
Jupiter Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but ...
,
Saturn Saturn is the sixth planet from the Sun and the second-largest in the Solar System, after Jupiter. It is a gas giant with an average radius of about nine and a half times that of Earth. It has only one-eighth the average density of Earth; h ...
,
Neptune Neptune is the eighth planet from the Sun and the farthest known planet in the Solar System. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 times ...
, and, probably,
Venus Venus is the second planet from the Sun. It is sometimes called Earth's "sister" or "twin" planet as it is almost as large and has a similar composition. As an interior planet to Earth, Venus (like Mercury) appears in Earth's sky never fa ...
.


Life cycle

Warm air has a lower
density Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematical ...
than cool air, so warmer air rises upwards and cooler air will settle at the bottom (this effect can be seen with a hot air balloon). Clouds form as relatively warmer air, carrying moisture, rises within cooler air. The moist air rises, and, as it does so, it cools and some of the
water vapor (99.9839 °C) , - , Boiling point , , - , specific gas constant , 461.5 J/( kg·K) , - , Heat of vaporization , 2.27 MJ/kg , - , Heat capacity , 1.864 kJ/(kg·K) Water vapor, water vapour or aqueous vapor is the gaseous pha ...
in that rising air condenses. When the moisture condenses, it releases energy known as latent heat of condensation, which allows the rising packet of air to cool less than the cooler surrounding air continuing the cloud's ascension. If enough
instability In numerous fields of study, the component of instability within a system is generally characterized by some of the outputs or internal states growing without bounds. Not all systems that are not stable are unstable; systems can also be mar ...
is present in the atmosphere, this process will continue long enough for cumulonimbus clouds to form and produce
lightning Lightning is a naturally occurring electrostatic discharge during which two electric charge, electrically charged regions, both in the atmosphere or with one on the land, ground, temporarily neutralize themselves, causing the instantaneous ...
and thunder. Meteorological indices such as convective available potential energy (CAPE) and the
lifted index The lifted index (LI) is the temperature difference between the environment Te(p) and an air parcel lifted adiabatically Tp(p) at a given pressure height in the troposphere (lowest layer where most weather occurs) of the atmosphere, usually 500 ...
can be used to assist in determining potential upward vertical development of clouds. Generally, thunderstorms require three conditions to form: # Moisture # An unstable airmass # A lifting force (heat) All thunderstorms, regardless of type, go through three stages: the developing stage, the mature stage, and the dissipation stage. The average thunderstorm has a diameter. Depending on the conditions present in the atmosphere, each of these three stages take an average of 30 minutes.


Developing stage

The first stage of a thunderstorm is the cumulus stage or developing stage. During this stage, masses of moisture are lifted upwards into the atmosphere. The trigger for this lift can be solar illumination, where the heating of the ground produces
thermals A thermal column (or thermal) is a rising mass of buoyant air, a convective current in the atmosphere, that transfers heat energy vertically. Thermals are created by the uneven heating of Earth's surface from solar radiation, and are an example ...
, or where two winds converge forcing air upwards, or where winds blow over terrain of increasing elevation. The moisture carried upward cools into liquid drops of water due to lower temperatures at high altitude, which appear as '' cumulus'' clouds. As the water vapor condenses into liquid, latent heat is released, which warms the air, causing it to become less dense than the surrounding, drier air. The air tends to rise in an '' updraft'' through the process of
convection Convection is single or multiphase fluid flow that occurs spontaneously due to the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoyancy). When the cause of the convec ...
(hence the term
convective precipitation In meteorology, the different types of precipitation often include the character, formation, or phase of the precipitation which is falling to ground level. There are three distinct ways that precipitation can occur. Convective precipitation is g ...
). This process creates a low-pressure zone within and beneath the forming thunderstorm. In a typical thunderstorm, approximately 500 million kilograms of water vapor are lifted into the
Earth's atmosphere The atmosphere of Earth is the layer of gases, known collectively as air, retained by Earth's gravity that surrounds the planet and forms its planetary atmosphere. The atmosphere of Earth protects life on Earth by creating pressure allowing for ...
.


Mature stage

In the mature stage of a thunderstorm, the warmed air continues to rise until it reaches an area of warmer air and can rise no farther. Often this 'cap' is the tropopause. The air is instead forced to spread out, giving the storm a characteristic
anvil An anvil is a metalworking tool consisting of a large block of metal (usually forged or cast steel), with a flattened top surface, upon which another object is struck (or "worked"). Anvils are as massive as practical, because the higher th ...
shape. The resulting cloud is called ''
cumulonimbus incus A cumulonimbus incus (Latin ''incus'', "anvil"), also known as an anvil cloud, is a cumulonimbus cloud which has reached the level of stratospheric stability and has formed the characteristic flat, anvil-top shape. It signifies the thunderstor ...
''. The water droplets
coalesce Coalesce may refer to: *Coalesce (band), a metalcore band from Kansas City, Missouri, active from 1994 to 1999, 2005– **Coalesce discography, a list of Coalesce's albums and songs *COALESCE, an SQL function *Null coalescing operator, a binary op ...
into larger and heavier droplets and freeze to become ice particles. As these fall, they melt to become rain. If the updraft is strong enough, the droplets are held aloft long enough to become so large that they do not melt completely but fall as
hail Hail is a form of solid precipitation. It is distinct from ice pellets (American English "sleet"), though the two are often confused. It consists of balls or irregular lumps of ice, each of which is called a hailstone. Ice pellets generally fal ...
. While updrafts are still present, the falling rain drags the surrounding air with it, creating '' downdrafts'' as well. The simultaneous presence of both an updraft and a downdraft marks the mature stage of the storm and produces cumulonimbus clouds. During this stage, considerable internal
turbulence In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to a laminar flow, which occurs when a fluid flows in parallel layers, with no disruption between ...
can occur, which manifests as strong winds, severe lightning, and even
tornado A tornado is a violently rotating column of air that is in contact with both the surface of the Earth and a cumulonimbus cloud or, in rare cases, the base of a cumulus cloud. It is often referred to as a twister, whirlwind or cyclone, altho ...
es. Typically, if there is little wind shear, the storm will rapidly enter the dissipating stage and 'rain itself out', but, if there is sufficient change in wind speed or direction, the downdraft will be separated from the updraft, and the storm may become a supercell, where the mature stage can sustain itself for several hours.


Dissipating stage

In the dissipation stage, the thunderstorm is dominated by the downdraft. If atmospheric conditions do not support super cellular development, this stage occurs rather quickly, approximately 20–30 minutes into the life of the thunderstorm. The downdraft will push down out of the thunderstorm, hit the ground and spread out. This phenomenon is known as a downburst. The cool air carried to the ground by the downdraft cuts off the inflow of the thunderstorm, the updraft disappears and the thunderstorm will dissipate. Thunderstorms in an atmosphere with virtually no vertical wind shear weaken as soon as they send out an outflow boundary in all directions, which then quickly cuts off its
inflow Inflow may refer to: * Inflow (hydrology), the water entering a body of water * Inflow (meteorology) Inflow is the flow of a fluid into a large collection of that fluid. Within meteorology, inflow normally refers to the influx of warmth and moi ...
of relatively warm, moist air, and kills the thunderstorm's further growth. The downdraft hitting the ground creates an outflow boundary. This can cause downbursts, a potential hazardous condition for aircraft to fly through, as a substantial change in wind speed and direction occurs, resulting in a decrease of airspeed and the subsequent reduction in lift for the aircraft. The stronger the outflow boundary is, the stronger the resultant vertical wind shear becomes.


Classification

There are four main types of thunderstorms: single-cell, multi-cell, squall line (also called multi-cell line) and supercell. Which type forms depends on the instability and relative wind conditions at different layers of the atmosphere (" wind shear"). Single-cell thunderstorms form in environments of low vertical wind shear and last only 20–30 minutes. Organized thunderstorms and thunderstorm clusters/lines can have longer life cycles as they form in environments of significant vertical wind shear, normally greater than in the lowest of the
troposphere The troposphere is the first and lowest layer of the atmosphere of the Earth, and contains 75% of the total mass of the planetary atmosphere, 99% of the total mass of water vapour and aerosols, and is where most weather phenomena occur. From ...
, which aids the development of stronger updrafts as well as various forms of severe weather. The supercell is the strongest of the thunderstorms, most commonly associated with large hail, high winds, and tornado formation. Precipitable water values of greater than favor the development of organized thunderstorm complexes. Those with heavy rainfall normally have precipitable water values greater than . Upstream values of CAPE of greater than 800 J/kg are usually required for the development of organized convection.


Single-cell

This term technically applies to a single thunderstorm with one main updraft. Also known as air-mass thunderstorms, these are the typical summer thunderstorms in many temperate locales. They also occur in the cool unstable air that often follows the passage of a cold front from the sea during winter. Within a cluster of thunderstorms, the term "cell" refers to each separate principal updraft. Thunderstorm cells occasionally form in isolation, as the occurrence of one thunderstorm can develop an outflow boundary that sets up new thunderstorm development. Such storms are rarely severe and are a result of local atmospheric instability; hence the term "air mass thunderstorm". When such storms have a brief period of severe weather associated with them, it is known as a pulse severe storm. Pulse severe storms are poorly organized and occur randomly in time and space, making them difficult to forecast. Single-cell thunderstorms normally last 20–30 minutes.


Multi-cell clusters

This is the most common type of thunderstorm development. ''Mature thunderstorms'' are found near the center of the cluster, while dissipating thunderstorms exist on their downwind side. ''Multicell storms'' form as clusters of storms but may then evolve into one or more squall lines. While each cell of the cluster may only last 20 minutes, the cluster itself may persist for hours at a time. They often arise from convective updrafts in or near mountain ranges and linear weather boundaries, such as strong cold fronts or troughs of low pressure. These type of storms are stronger than the single-cell storm, yet much weaker than the supercell storm. Hazards with the multicell cluster include moderate-sized hail, flash flooding, and weak tornadoes.


Multicell lines

A squall line is an elongated line of severe thunderstorms that can form along or ahead of a cold front. In the early 20th century, the term was used as a synonym for cold front. The squall line contains heavy
precipitation In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravitational pull from clouds. The main forms of precipitation include drizzle, rain, sleet, snow, ice pellets, graupel and hail. ...
,
hail Hail is a form of solid precipitation. It is distinct from ice pellets (American English "sleet"), though the two are often confused. It consists of balls or irregular lumps of ice, each of which is called a hailstone. Ice pellets generally fal ...
, frequent
lightning Lightning is a naturally occurring electrostatic discharge during which two electric charge, electrically charged regions, both in the atmosphere or with one on the land, ground, temporarily neutralize themselves, causing the instantaneous ...
, strong straight line winds, and possibly
tornado A tornado is a violently rotating column of air that is in contact with both the surface of the Earth and a cumulonimbus cloud or, in rare cases, the base of a cumulus cloud. It is often referred to as a twister, whirlwind or cyclone, altho ...
es and
waterspouts A waterspout is an intense columnar vortex (usually appearing as a funnel-shaped cloud) that occurs over a body of water. Some are connected to a cumulus congestus cloud, some to a cumuliform cloud and some to a cumulonimbus cloud. In the com ...
. Severe weather in the form of strong straight-line winds can be expected in areas where the squall line itself is in the shape of a bow echo, within the portion of the line that bows out the most.
Tornado A tornado is a violently rotating column of air that is in contact with both the surface of the Earth and a cumulonimbus cloud or, in rare cases, the base of a cumulus cloud. It is often referred to as a twister, whirlwind or cyclone, altho ...
es can be found along waves within a
line echo wave pattern A line echo wave pattern (LEWP) is a weather radar formation in which a single line of thunderstorms presenting multiple bow echoes forms south (or equatorward) of a mesoscale low-pressure area with a rotating "head". LEWP often are associated wi ...
, or LEWP, where mesoscale low pressure areas are present. Some bow echoes in the summer are called derechos, and move quite fast through large sections of territory. On the back edge of the rain shield associated with mature squall lines, a
wake low A wake low, or wake depression, is a mesoscale low-pressure area which trails the mesoscale high following a squall line. Due to the subsiding warm air associated with the system's formation, clearing skies are associated with the wake low. Onc ...
can form, which is a mesoscale low pressure area that forms behind the mesoscale high pressure system normally present under the rain canopy, which are sometimes associated with a
heat burst In meteorology, a heat burst is a rare atmospheric phenomenon characterized by a sudden, localized increase in air temperature near the Earth's surface. Heat bursts typically occur during night-time and are associated with decaying thunderstorm ...
. This kind of storm is also known as "Wind of the Stony Lake" (Traditional Chinese:石湖風 – shi2 hu2 feng1, Simplified Chinese: 石湖风) in southern China.


Supercells

Supercell storms are large, usually severe, quasi-steady-state storms that form in an environment where wind speed or wind direction varies with height (" wind shear"), and they have separate downdrafts and updrafts (i.e., where its associated precipitation is not falling through the updraft) with a strong, rotating updraft (a " mesocyclone"). These storms normally have such powerful updrafts that the top of the supercell storm cloud (or anvil) can break through the
troposphere The troposphere is the first and lowest layer of the atmosphere of the Earth, and contains 75% of the total mass of the planetary atmosphere, 99% of the total mass of water vapour and aerosols, and is where most weather phenomena occur. From ...
and reach into the lower levels of the
stratosphere The stratosphere () is the second layer of the atmosphere of the Earth, located above the troposphere and below the mesosphere. The stratosphere is an atmospheric layer composed of stratified temperature layers, with the warm layers of air ...
. Supercell storms can be wide. Research has shown that at least 90 percent of supercells cause severe weather. These storms can produce destructive
tornado A tornado is a violently rotating column of air that is in contact with both the surface of the Earth and a cumulonimbus cloud or, in rare cases, the base of a cumulus cloud. It is often referred to as a twister, whirlwind or cyclone, altho ...
es, extremely large
hail Hail is a form of solid precipitation. It is distinct from ice pellets (American English "sleet"), though the two are often confused. It consists of balls or irregular lumps of ice, each of which is called a hailstone. Ice pellets generally fal ...
stones ( diameter), straight-line winds in excess of , and
flash flood A flash flood is a rapid flooding of low-lying areas: washes, rivers, dry lakes and depressions. It may be caused by heavy rain associated with a severe thunderstorm, hurricane, or tropical storm, or by meltwater from ice or snow flowing o ...
s. In fact, research has shown that most tornadoes occur from this type of thunderstorm. Supercells are generally the strongest type of thunderstorm.


Severe thunderstorms

In the United States, a thunderstorm is classed as severe if winds reach at least , hail is in diameter or larger, or if funnel clouds or
tornado A tornado is a violently rotating column of air that is in contact with both the surface of the Earth and a cumulonimbus cloud or, in rare cases, the base of a cumulus cloud. It is often referred to as a twister, whirlwind or cyclone, altho ...
es are reported. Although a funnel cloud or tornado indicates a severe thunderstorm, a tornado warning is issued in place of a severe thunderstorm warning. A severe thunderstorm warning is issued if a thunderstorm becomes severe, or will soon turn severe. In Canada, a rainfall rate greater than in one hour, or in three hours, is also used to indicate severe thunderstorms. Severe thunderstorms can occur from any type of storm cell. However, multicell, supercell, and squall lines represent the most common forms of thunderstorms that produce severe weather.


Mesoscale convective systems

A mesoscale convective system (MCS) is a complex of thunderstorms that becomes organized on a scale larger than the individual thunderstorms but smaller than
extratropical cyclone Extratropical cyclones, sometimes called mid-latitude cyclones or wave cyclones, are low-pressure areas which, along with the anticyclones of high-pressure areas, drive the weather over much of the Earth. Extratropical cyclones are capable of ...
s, and normally persists for several hours or more. A mesoscale convective system's overall cloud and precipitation pattern may be round or linear in shape, and include weather systems such as
tropical cyclone A tropical cyclone is a rapidly rotating storm system characterized by a low-pressure center, a closed low-level atmospheric circulation, strong winds, and a spiral arrangement of thunderstorms that produce heavy rain and squalls. Depend ...
s, squall lines,
lake-effect snow Lake-effect snow is produced during cooler atmospheric conditions when a cold air mass moves across long expanses of warmer lake water. The lower layer of air, heated up by the lake water, picks up water vapor from the lake and rises up through ...
events,
polar low A polar low is a mesoscale, short-lived atmospheric low pressure area, low pressure system (depression) that is found over the ocean areas poleward of the main polar front in both the Northern and Southern Hemispheres, as well as the Sea of Japan ...
s, and mesoscale convective complexes (MCCs), and they generally form near weather fronts. Most mesoscale convective systems develop overnight and continue their lifespan through the next day. They tend to form when the surface temperature varies by more than between day and night. The type that forms during the warm season over land has been noted across North America, Europe, and Asia, with a maximum in activity noted during the late afternoon and evening hours. Forms of MCS that develop in the tropics are found in use either the
Intertropical Convergence Zone The Intertropical Convergence Zone (ITCZ ), known by sailors as the doldrums or the calms because of its monotonous windless weather, is the area where the northeast and the southeast trade winds converge. It encircles Earth near the thermal e ...
or monsoon troughs, generally within the warm season between spring and fall. More intense systems form over land than over water. One exception is that of
lake-effect snow Lake-effect snow is produced during cooler atmospheric conditions when a cold air mass moves across long expanses of warmer lake water. The lower layer of air, heated up by the lake water, picks up water vapor from the lake and rises up through ...
bands, which form due to cold air moving across relatively warm bodies of water, and occurs from fall through spring. Polar lows are a second special class of MCS. They form at high latitudes during the cold season. Once the parent MCS dies, later thunderstorm development can occur in connection with its remnant mesoscale convective vortex (MCV). Mesoscale convective systems are important to the United States rainfall climatology over the
Great Plains The Great Plains (french: Grandes Plaines), sometimes simply "the Plains", is a broad expanse of flatland in North America. It is located west of the Mississippi River and east of the Rocky Mountains, much of it covered in prairie, steppe, an ...
since they bring the region about half of their annual warm season rainfall.


Motion

The two major ways thunderstorms move are via
advection In the field of physics, engineering, and earth sciences, advection is the transport of a substance or quantity by bulk motion of a fluid. The properties of that substance are carried with it. Generally the majority of the advected substance is al ...
of the wind and propagation along outflow boundaries towards sources of greater heat and moisture. Many thunderstorms move with the mean wind speed through the Earth's
troposphere The troposphere is the first and lowest layer of the atmosphere of the Earth, and contains 75% of the total mass of the planetary atmosphere, 99% of the total mass of water vapour and aerosols, and is where most weather phenomena occur. From ...
, the lowest of the
Earth's atmosphere The atmosphere of Earth is the layer of gases, known collectively as air, retained by Earth's gravity that surrounds the planet and forms its planetary atmosphere. The atmosphere of Earth protects life on Earth by creating pressure allowing for ...
. Weaker thunderstorms are steered by winds closer to the Earth's surface than stronger thunderstorms, as the weaker thunderstorms are not as tall. Organized, long-lived thunderstorm cells and complexes move at a right angle to the direction of the vertical wind shear vector. If the gust front, or leading edge of the outflow boundary, races ahead of the thunderstorm, its motion will accelerate in tandem. This is more of a factor with thunderstorms with heavy precipitation (HP) than with thunderstorms with low precipitation (LP). When thunderstorms merge, which is most likely when numerous thunderstorms exist in proximity to each other, the motion of the stronger thunderstorm normally dictates the future motion of the merged cell. The stronger the mean wind, the less likely other processes will be involved in storm motion. On
weather radar Weather radar, also called weather surveillance radar (WSR) and Doppler weather radar, is a type of radar used to locate precipitation, calculate its motion, and estimate its type (rain, snow, hail etc.). Modern weather radars are mostly puls ...
, storms are tracked by using a prominent feature and tracking it from scan to scan.


Back-building thunderstorm

A back-building thunderstorm, commonly referred to as a training thunderstorm, is a thunderstorm in which new development takes place on the upwind side (usually the west or southwest side in the
Northern Hemisphere The Northern Hemisphere is the half of Earth that is north of the Equator. For other planets in the Solar System, north is defined as being in the same celestial hemisphere relative to the invariable plane of the solar system as Earth's Nort ...
), such that the storm seems to remain stationary or propagate in a backward direction. Though the storm often appears stationary on radar, or even moving upwind, this is an illusion. The storm is really a multi-cell storm with new, more vigorous cells that form on the upwind side, replacing older cells that continue to drift downwind. When this happens, catastrophic flooding is possible. In
Rapid City, South Dakota Rapid City ( lkt, link=no, Mni Lúzahaŋ Otȟúŋwahe; "Swift Water City") is the second most populous city in South Dakota and the county seat of Pennington County. Named after Rapid Creek, where the settlement developed, it is in western So ...
, in 1972, an unusual alignment of winds at various levels of the atmosphere combined to produce a continuously training set of cells that dropped an enormous quantity of rain upon the same area, resulting in devastating flash flooding. A similar event occurred in Boscastle, England, on 16 August 2004, and over Chennai on 1 December 2015.


Hazards

Each year, many people are killed or seriously injured by severe thunderstorms despite the advance warning. While severe thunderstorms are most common in the
spring Spring(s) may refer to: Common uses * Spring (season), a season of the year * Spring (device), a mechanical device that stores energy * Spring (hydrology), a natural source of water * Spring (mathematics), a geometric surface in the shape of a ...
and
summer Summer is the hottest of the four temperate seasons, occurring after spring and before autumn. At or centred on the summer solstice, the earliest sunrise and latest sunset occurs, daylight hours are longest and dark hours are shortest, wit ...
, they can occur at just about any time of the year.


Cloud-to-ground lightning

Cloud-to-ground lightning Lightning is a naturally occurring electrostatic discharge during which two electric charge, electrically charged regions, both in the atmosphere or with one on the land, ground, temporarily neutralize themselves, causing the instantaneous ...
frequently occurs within the phenomena of thunderstorms and have numerous hazards towards landscapes and populations. One of the more significant hazards lightning can pose is the wildfires they are capable of igniting. Under a regime of low precipitation (LP) thunderstorms, where little precipitation is present, rainfall cannot prevent fires from starting when vegetation is dry as lightning produces a concentrated amount of extreme heat. Direct damage caused by lightning strikes occurs on occasion. In areas with a high frequency for cloud-to-ground lightning, like Florida, lightning causes several fatalities per year, most commonly to people working outside. Acid rain is also a frequent risk produced by lightning. Distilled water has a neutral pH of 7. "Clean" or unpolluted rain has a slightly acidic pH of about 5.2, because carbon dioxide and water in the air react together to form carbonic acid, a weak acid (pH 5.6 in distilled water), but unpolluted rain also contains other chemicals. Nitric oxide present during thunderstorm phenomena, caused by the oxidation of atmospheric nitrogen, can result in the production of acid rain, if nitric oxide forms compounds with the water molecules in precipitation, thus creating acid rain. Acid rain can damage infrastructures containing calcite or certain other solid chemical compounds. In ecosystems, acid rain can dissolve plant tissues of vegetations and increase acidification process in bodies of water and in soil, resulting in deaths of marine and terrestrial organisms.


Hail

Any thunderstorm that produces hail that reaches the ground is known as a hailstorm. Thunderclouds that are capable of producing hailstones are often seen obtaining green coloration. Hail is more common along mountain ranges because mountains force horizontal winds upwards (known as orographic lifting), thereby intensifying the updrafts within thunderstorms and making hail more likely. One of the more common regions for large hail is across mountainous northern India, which reported one of the highest hail-related death tolls on record in 1888. China also experiences significant hailstorms. Across Europe, Croatia experiences frequent occurrences of hail. In North America, hail is most common in the area where Colorado, Nebraska, and Wyoming meet, known as "Hail Alley". Hail in this region occurs between the months of March and October during the afternoon and evening hours, with the bulk of the occurrences from May through September. Cheyenne, Wyoming is North America's most hail-prone city with an average of nine to ten hailstorms per season. In South America, areas prone to hail are cities like Bogotá, Colombia. Hail can cause serious damage, notably to automobiles, aircraft, skylights, glass-roofed structures, livestock, and most commonly, farmers' crops. Hail is one of the most significant thunderstorm hazards to aircraft. When hail stones exceed in diameter, planes can be seriously damaged within seconds. The hailstones accumulating on the ground can also be hazardous to landing aircraft. Wheat, corn, soybeans, and tobacco are the most sensitive crops to hail damage. Hail is one of Canada's most costly hazards. Hailstorms have been the cause of costly and deadly events throughout history. One of the earliest recorded incidents occurred around the 9th century in Roopkund, Uttarakhand, India. The largest hailstone in terms of maximum circumference and length ever recorded in the United States fell in 2003 in Aurora, Nebraska, United States.


Tornadoes and waterspouts

A tornado is a violent, rotating column of air in contact with both the surface of the earth and a cumulonimbus cloud (otherwise known as a thundercloud) or, in rare cases, the base of a cumulus cloud. Tornadoes come in many sizes but are typically in the form of a visible Funnel cloud, condensation funnel, whose narrow end touches the earth and is often encircled by a cloud of debris and dust. Most tornadoes have wind speeds between , are approximately across, and travel several kilometers (a few miles) before dissipating. Some attain wind speeds of more than , stretch more than across, and stay on the ground for more than 100 kilometres (dozens of miles). The Fujita scale and the Enhanced Fujita Scale rate tornadoes by damage caused. An EF0 tornado, the weakest category, damages trees but does not cause significant damage to structures. An EF5 tornado, the strongest category, rips buildings off their foundations and can deform large skyscrapers. The similar TORRO scale ranges from a T0 for extremely weak tornadoes to T11 for the most powerful known tornadoes. Pulse-Doppler radar, Doppler weather radar, radar data, photogrammetry, and ground swirl patterns (cycloidal marks) may also be analyzed to determine intensity and award a rating. Waterspouts have similar characteristics as tornadoes, characterized by a spiraling funnel-shaped wind current that form over bodies of water, connecting to large cumulonimbus clouds. Waterspouts are generally classified as forms of tornadoes, or more specifically, non- supercelled tornadoes that develop over large bodies of water. These spiralling columns of air frequently develop within tropical areas close to the equator, but are less common within areas of high latitude.


Flash flood

Flash flooding is the process where a landscape, most notably an urban environment, is subjected to rapid floods. These rapid floods occur more quickly and are more localized than seasonal river flooding or areal flooding and are frequently (though not always) associated with intense rainfall. Flash flooding can frequently occur in slow-moving thunderstorms and is usually caused by the heavy liquid precipitation that accompanies it. Flash floods are most common in arid regions as well as densely populated urban environments, where few plants, and bodies of water are present to absorb and contain the extra water. Flash flooding can be hazardous to small infrastructure, such as bridges, and weakly constructed buildings. Plants and crops in agricultural areas can be destroyed and devastated by the force of raging water. Automobiles parked within affected areas can also be displaced. Soil erosion can occur as well, exposing risks of landslide phenomena.


Downburst

Downburst winds can produce numerous hazards to landscapes experiencing thunderstorms. Downburst winds are generally very powerful, and are often mistaken for wind speeds produced by tornadoes, due to the concentrated amount of force exerted by their straight-horizontal characteristic. Downburst winds can be hazardous to unstable, incomplete, or weakly constructed infrastructures and buildings. Agricultural crops, and other plants in nearby environments can be uprooted and damaged. Aircraft engaged in takeoff or landing can crash. Automobiles can be displaced by the force exerted by downburst winds. Downburst winds are usually formed in areas when high pressure air systems of downdrafts begin to sink and displace the air masses below it, due to their higher density. When these downdrafts reach the surface, they spread out and turn into the destructive straight-horizontal winds.


Thunderstorm asthma

Thunderstorm asthma is the triggering of an asthma attack by environmental conditions directly caused by a local thunderstorm. During a thunderstorm, pollen grains can absorb moisture and then burst into much smaller fragments with these fragments being easily dispersed by wind. While larger pollen grains are usually filtered by hairs in the nose, the smaller pollen fragments are able to pass through and enter the lungs, triggering the asthma attack.


Safety precautions

Most thunderstorms come and go fairly uneventfully; however, any thunderstorm can become Severe thunderstorm, severe, and all thunderstorms, by definition, present the danger of
lightning Lightning is a naturally occurring electrostatic discharge during which two electric charge, electrically charged regions, both in the atmosphere or with one on the land, ground, temporarily neutralize themselves, causing the instantaneous ...
. Thunderstorm preparedness and safety refers to taking steps before, during, and after a thunderstorm to minimize injury and damage.


Preparedness

Preparedness refers to precautions that should be taken before a thunderstorm. Some preparedness takes the form of general readiness (as a thunderstorm can occur at any time of the day or year). Preparing a family emergency plan, for example, can save valuable time if a storm arises quickly and unexpectedly. Preparing the home by removing dead or rotting limbs and trees, which can be blown over in high winds, can also significantly reduce the risk of property damage and personal injury. The National Weather Service (NWS) in the United States recommends several precautions that people should take if thunderstorms are likely to occur: :* Know the names of local counties, cities, and towns, as these are how warnings are described. :* Monitor forecasts and weather conditions and know whether thunderstorms are likely in the area. :* Be alert for natural signs of an approaching storm. :* Cancel or reschedule outdoor events (to avoid being caught outdoors when a storm hits). :* Take action early so you have time to get to a safe place. :* Get inside a substantial building or hard-topped metal vehicle before threatening weather arrives. :* If you hear thunder, get to the safe place immediately. :* Avoid open areas like hilltops, fields, and beaches, and don't be or be near the tallest objects in an area when thunderstorms are occurring. :* Don't shelter under tall or isolated trees during thunderstorms. :* If in the woods, put as much distance as possible between you and any trees during thunderstorms. :* If in a group, spread out to increase the chances of survivors who could come to the aid of any victims from a lightning strike.


Safety

While safety and preparedness often overlap, "thunderstorm safety" generally refers to what people should do during and after a storm. The American Red Cross recommends that people follow these precautions if a storm is imminent or in progress: :* Take action immediately upon hearing thunder. Anyone close enough to the storm to hear thunder can be struck by lightning. :* Avoid electrical appliances, including corded telephones. Cordless telephone, Cordless and wireless telephones are safe to use during a thunderstorm. :* Close and stay away from windows and doors, as glass can become a serious hazard in high wind. :* Do not bathe or shower, as plumbing conducts electricity. :* If driving, safely exit the roadway, turn on hazard lights, and park. Remain in the vehicle and avoid touching metal. The NWS stopped recommending the "lightning crouch" in 2008 as it doesn't provide a significant level of protection and will not significantly lower the risk of being killed or injured from a nearby lightning strike.


Frequent occurrences

Thunderstorms occur throughout the world, even in the polar regions, with the greatest frequency in tropical rainforest areas, where they may occur nearly daily. At any given time approximately 2,000 thunderstorms are occurring on Earth. Kampala and Tororo in Uganda have each been mentioned as the most thunderous places on Earth, a claim also made for Singapore and Bogor on the Indonesian island of Java (island), Java. Other cities known for frequent storm activity include Darwin, Northern Territory, Darwin, Caracas, Manila and Mumbai. Thunderstorms are associated with the various monsoon seasons around the globe, and they populate the
rainband A rainband is a cloud and precipitation structure associated with an area of rainfall which is significantly elongated. Rainbands can be stratiform or convective, and are generated by differences in temperature. When noted on weather radar ima ...
s of
tropical cyclone A tropical cyclone is a rapidly rotating storm system characterized by a low-pressure center, a closed low-level atmospheric circulation, strong winds, and a spiral arrangement of thunderstorms that produce heavy rain and squalls. Depend ...
s. In temperate regions, they are most frequent in spring and summer, although they can occur along or ahead of cold fronts at any time of year. They may also occur within a cooler air mass following the passage of a cold front over a relatively warmer body of water. Thunderstorms are rare in polar regions because of cold surface temperatures. Some of the most powerful thunderstorms over the United States occur in the Midwest and the Southern United States, Southern states. These storms can produce large hail and powerful tornadoes. Thunderstorms are relatively uncommon along much of the West Coast of the United States, but they occur with greater frequency in the inland areas, particularly the Sacramento Valley, Sacramento and San Joaquin Valley, San Joaquin Valleys of California. In spring and summer, they occur nearly daily in certain areas of the Rocky Mountains as part of the North American Monsoon regime. In the Northeastern United States, Northeast, storms take on similar characteristics and patterns as the Midwest, but with less frequency and severity. During the summer, air-mass thunderstorms are an almost daily occurrence over central and southern parts of Florida.


Energy

If the quantity of water that is condensed in and subsequently precipitated from a cloud is known, then the total energy of a thunderstorm can be calculated. In a typical thunderstorm, approximately 5×108 kg of water vapor are lifted, and the amount of energy released when this condenses is 1015 joules. This is on the same order of magnitude of energy released within a tropical cyclone, and more energy than that released during Atomic bombings of Hiroshima and Nagasaki, the atomic bomb blast at Hiroshima, Japan in 1945. The Fermi Gamma-ray Burst Monitor results show that gamma rays and antimatter particles (positrons) can be generated in powerful thunderstorms. It is suggested that the antimatter positrons are formed in terrestrial gamma-ray flashes (TGF). TGFs are brief bursts occurring inside thunderstorms and associated with lightning. The streams of positrons and electrons collide higher in the atmosphere to generate more gamma rays. About 500 TGFs may occur every day worldwide, but mostly go undetected.


Studies

In more contemporary times, thunderstorms have taken on the role of a scientific curiosity. Every spring, storm chasing, storm chasers head to the
Great Plains The Great Plains (french: Grandes Plaines), sometimes simply "the Plains", is a broad expanse of flatland in North America. It is located west of the Mississippi River and east of the Rocky Mountains, much of it covered in prairie, steppe, an ...
of the United States and the Canadian Prairies to explore the scientific aspects of storms and tornadoes through use of videotaping. Radio pulses produced by cosmic rays are being used to study how electric charges develop within thunderstorms. More organized meteorological projects such as VORTEX2 use an array of sensors, such as the Doppler on Wheels, vehicles with mounted automated
weather station A weather station is a facility, either on land or sea, with instruments and equipment for measuring atmospheric conditions to provide information for weather forecasts and to study the weather and climate. The measurements taken include tempera ...
s, weather balloons, and unmanned aircraft to investigate thunderstorms expected to produce severe weather. Lightning is detected remotely using sensors that detect cloud-to-ground lightning strokes with 95 percent accuracy in detection and within of their point of origin.


Mythology and religion

Thunderstorms strongly influenced many early civilizations. Ancient Greece, Greeks believed that they were battles waged by Zeus, who hurled lightning bolts forged by Hephaestus. Some Indigenous peoples of the Americas, American Indian tribes associated thunderstorms with the Thunderbird (mythology), Thunderbird, who they believed was a servant of the Great Spirit. The Norsemen, Norse considered thunderstorms to occur when Thor went to fight Jötunn, Jötnar, with the thunder and lightning being the effect of his strikes with the hammer Mjölnir. Hinduism recognizes Indra as the god of rain and thunderstorms. Christian doctrine accepts that fierce storms are the work of God. These ideas were still within the mainstream as late as the 18th century. Martin Luther was out walking when a thunderstorm began, causing him to pray to God for being saved and promising to become a monk.


Outside of Earth

Thunderstorms, evidenced by flashes of
lightning Lightning is a naturally occurring electrostatic discharge during which two electric charge, electrically charged regions, both in the atmosphere or with one on the land, ground, temporarily neutralize themselves, causing the instantaneous ...
, on Jupiter have been detected and are associated with clouds where water may exist as both a liquid and ice, suggesting a mechanism similar to that on Earth. (Water is a polar molecule that can carry a charge, so it is capable of creating the charge separation needed to produce lightning). These electrical discharges can be up to a thousand times more powerful than lightning on the Earth. The water clouds can form thunderstorms driven by the heat rising from the interior. The clouds of Venus may also be capable of producing
lightning Lightning is a naturally occurring electrostatic discharge during which two electric charge, electrically charged regions, both in the atmosphere or with one on the land, ground, temporarily neutralize themselves, causing the instantaneous ...
; some observations suggest that the lightning rate is at least half of that on Earth.


See also

* Barber's pole#Meteorology, Barber's pole * Continuous gusts * Convective storm detection * Hector (cloud) * Severe thunderstorm warning and Severe thunderstorm watch * Thundersnow * Tornado warning * Tornado watch * Training (meteorology)


References


Further reading

* Burgess, D. W., R. J. Donaldson Jr., and P. R. Desrochers, 1993: ''Tornado detection and warning by radar. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr.'', No. 79, American Geophysical Union, 203–221. * Corfidi, S. F., 1998: ''Forecasting MCS mode and motion.'' Preprints 19th Conf. on Severe Local Storms, American Meteorological Society, Minneapolis, Minnesota, pp. 626–629. * * Davies, J. M., and R. H. Johns, 1993: ''Some wind and instability parameters associated with strong and violent tornadoes. Part I: Helicity and mean shear magnitudes. The Tornado: Its Structure, Dynamics, Prediction, and Hazards'' (C. Church et al., Eds.), Geophysical Monograph 79, American Geophysical Union, 573–582. * David, C. L. 1973: ''An objective of estimating the probability of severe thunderstorms''. Preprint Eight conference of Severe Local Storms. Denver, Colorado, American Meteorological Society, 223–225. * * Doswell, C.A., III, S.J. Weiss and R.H. Johns (1993): ''Tornado forecasting: A review. The Tornado: Its Structure, Dynamics, Prediction, and Hazards (C. Church et al., Eds)'', Geophys. Monogr. No. 79, American Geophysical Union, 557–571. * Johns, R. H., J. M. Davies, and P. W. Leftwich, 1993: ''Some wind and instability parameters associated with strong and violent tornadoes. Part II: Variations in the combinations of wind and instability parameters. The Tornado: Its Structure, Dynamics, Prediction and Hazards, Geophys. Mongr.'', No. 79, American Geophysical Union, 583–590. * Evans, Jeffry S.,: ''Examination of Derecho Environments Using Proximity Soundings''
NOAA.gov
* J. V. Iribarne and W.L. Godson, ''Atmospheric Thermodynamics'', published by D. Reidel Publishing Company, Dordrecht, the Netherlands, 1973 * M. K. Yau and R. R. Rogers, ''Short Course in Cloud Physics, Third Edition'', published by Butterworth-Heinemann, 1 January 1989,


External links


Anatomy of a thunderstorm

Electronic Journal of Severe Storms Meteorology
{{Good article Lightning, Storm Atmospheric electricity Weather hazards to aircraft Mesoscale meteorology Severe weather and convection Storm Weather hazards Rain Articles containing video clips