HOME

TheInfoList



OR:

In
mathematical analysis Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (m ...
, constructive function theory is a field which studies the connection between the smoothness of a
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-oriente ...
and its degree of
approximation An approximation is anything that is intentionally similar but not exactly equality (mathematics), equal to something else. Etymology and usage The word ''approximation'' is derived from Latin ''approximatus'', from ''proximus'' meaning ''very ...
. It is closely related to
approximation theory In mathematics, approximation theory is concerned with how function (mathematics), functions can best be approximation, approximated with simpler functions, and with quantitative property, quantitatively characterization (mathematics), characteri ...
. The term was coined by
Sergei Bernstein Sergei Natanovich Bernstein (russian: Серге́й Ната́нович Бернште́йн, sometimes Romanized as ; 5 March 1880 – 26 October 1968) was a Ukrainian and Russian mathematician of Jewish origin known for contributions to parti ...
.


Example

Let ''f'' be a 2''π''-periodic function. Then ''f'' is ''α''- Hölder for some 0 < ''α'' < 1 if and only if for every natural ''n'' there exists a
trigonometric polynomial In the mathematical subfields of numerical analysis and mathematical analysis, a trigonometric polynomial is a finite linear combination of functions sin(''nx'') and cos(''nx'') with ''n'' taking on the values of one or more natural numbers. The c ...
''Pn'' of degree ''n'' such that : \max_ , f(x) - P_n(x) , \leq \frac, where ''C''(''f'') is a positive number depending on ''f''. The "only if" is due to
Dunham Jackson Dunham Jackson (July 24, 1888 in Bridgewater, Massachusetts – November 6, 1946) was a mathematician who worked within approximation theory, notably with trigonometrical and orthogonal polynomials. He is known for Jackson's inequality. He ...
, see
Jackson's inequality In approximation theory, Jackson's inequality is an inequality bounding the value of function's best approximation by algebraic or trigonometric polynomials in terms of the modulus of continuity or modulus of smoothness of the function or of it ...
; the "if" part is due to
Sergei Bernstein Sergei Natanovich Bernstein (russian: Серге́й Ната́нович Бернште́йн, sometimes Romanized as ; 5 March 1880 – 26 October 1968) was a Ukrainian and Russian mathematician of Jewish origin known for contributions to parti ...
, see
Bernstein's theorem (approximation theory) In approximation theory, Bernstein's theorem is a converse to Jackson's theorem. The first results of this type were proved by Sergei Bernstein in 1912. For approximation by trigonometric polynomials, the result is as follows: Let ''f'': , 2 ...
.


Notes


References

* * : : {{cite book, mr=0196342, last=Natanson, first=I. P., author-link=Isidor Natanson, title=Constructive function theory. Vol. III. Interpolation and approximation quadratures, publisher=Ungar Publishing Co., location=New York, year=1965 Approximation theory Smooth functions