Constitutive Relationship
   HOME

TheInfoList



OR:

In
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
and
engineering Engineering is the use of scientific method, scientific principles to design and build machines, structures, and other items, including bridges, tunnels, roads, vehicles, and buildings. The discipline of engineering encompasses a broad rang ...
, a constitutive equation or constitutive relation is a relation between two
physical quantities A physical quantity is a physical property of a material or system that can be quantified by measurement. A physical quantity can be expressed as a ''value'', which is the algebraic multiplication of a ' Numerical value ' and a ' Unit '. For examp ...
(especially
kinetic Kinetic (Ancient Greek: κίνησις “kinesis”, movement or to move) may refer to: * Kinetic theory of gases, Kinetic theory, describing a gas as particles in random motion * Kinetic energy, the energy of an object that it possesses due to i ...
quantities as related to
kinematic Kinematics is a subfield of physics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies (groups of objects) without considering the forces that cause them to move. Kinematics, as a fie ...
quantities) that is specific to a material or
substance Substance may refer to: * Matter, anything that has mass and takes up space Chemistry * Chemical substance, a material with a definite chemical composition * Drug substance ** Substance abuse, drug-related healthcare and social policy diagnosis ...
, and approximates the response of that material to external stimuli, usually as applied
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
s or
force In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a p ...
s. They are combined with other equations governing
physical law Scientific laws or laws of science are statements, based on repeated experiments or observations, that describe or predict a range of natural phenomena. The term ''law'' has diverse usage in many cases (approximate, accurate, broad, or narrow) a ...
s to solve physical problems; for example in
fluid mechanics Fluid mechanics is the branch of physics concerned with the mechanics of fluids ( liquids, gases, and plasmas) and the forces on them. It has applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical and bio ...
the flow of a fluid in a pipe, in
solid state physics Solid-state physics is the study of rigid matter, or solids, through methods such as quantum mechanics, crystallography, electromagnetism, and metallurgy. It is the largest branch of condensed matter physics. Solid-state physics studies how the l ...
the response of a crystal to an electric field, or in
structural analysis Structural analysis is a branch of Solid Mechanics which uses simplified models for solids like bars, beams and shells for engineering decision making. Its main objective is to determine the effect of loads on the physical structures and thei ...
, the connection between applied stresses or loads to strains or deformations. Some constitutive equations are simply
phenomenological Phenomenology may refer to: Art * Phenomenology (architecture), based on the experience of building materials and their sensory properties Philosophy * Phenomenology (philosophy), a branch of philosophy which studies subjective experiences and a ...
; others are derived from first principles. A common approximate constitutive equation frequently is expressed as a simple proportionality using a parameter taken to be a property of the material, such as
electrical conductivity Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allow ...
or a spring constant. However, it is often necessary to account for the directional dependence of the material, and the scalar parameter is generalized to a
tensor In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tenso ...
. Constitutive relations are also modified to account for the rate of response of materials and their
non-linear In mathematics and science, a nonlinear system is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other ...
behavior. See the article
Linear response function A linear response function describes the input-output relationship of a signal transducer such as a radio turning electromagnetic waves into music or a neuron turning synaptic input into a response. Because of its many applications in information ...
.


Mechanical properties of matter

The first constitutive equation (constitutive law) was developed by
Robert Hooke Robert Hooke FRS (; 18 July 16353 March 1703) was an English polymath active as a scientist, natural philosopher and architect, who is credited to be one of two scientists to discover microorganisms in 1665 using a compound microscope that ...
and is known as Hooke's law. It deals with the case of
linear elastic material Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mech ...
s. Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.
Walter Noll Walter Noll (January 7, 1925 June 6, 2017) was a mathematician, and Professor Emeritus at Carnegie Mellon University. He is best known for developing mathematical tools of classical mechanics, thermodynamics, and continuum mechanics. Biography B ...
advanced the use of constitutive equations, clarifying their classification and the role of invariance requirements, constraints, and definitions of terms like "material", "isotropic", "aeolotropic", etc. The class of "constitutive relations" of the form ''stress rate = f (velocity gradient, stress, density)'' was the subject of
Walter Noll Walter Noll (January 7, 1925 June 6, 2017) was a mathematician, and Professor Emeritus at Carnegie Mellon University. He is best known for developing mathematical tools of classical mechanics, thermodynamics, and continuum mechanics. Biography B ...
's dissertation in 1954 under
Clifford Truesdell Clifford Ambrose Truesdell III (February 18, 1919 – January 14, 2000) was an American mathematician, natural philosopher, and historian of science. Life Truesdell was born in Los Angeles, California. After high school, he spent two years in Eur ...
.See Truesdell's account i
Truesdell
''The naturalization and apotheosis of Walter Noll''. See als
Noll's account
and the classic treatise by both authors:
In modern
condensed matter physics Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the sub ...
, the constitutive equation plays a major role. See Linear constitutive equations and Nonlinear correlation functions.


Definitions


Deformation of solids


Friction

Friction Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction: *Dry friction is a force that opposes the relative lateral motion of t ...
is a complicated phenomenon. Macroscopically, the
friction Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction: *Dry friction is a force that opposes the relative lateral motion of t ...
force ''F'' between the interface of two materials can be modelled as proportional to the
reaction force As described by the third of Newton's laws of motion of classical mechanics, all forces occur in pairs such that if one object exerts a force on another object, then the second object exerts an equal and opposite reaction force on the first. The th ...
''R'' at a point of contact between two interfaces through a dimensionless coefficient of friction ''μ''f, which depends on the pair of materials: :F = \mu_\text R. This can be applied to static friction (friction preventing two stationary objects from slipping on their own), kinetic friction (friction between two objects scraping/sliding past each other), or rolling (frictional force which prevents slipping but causes a torque to exert on a round object).


Stress and strain

The stress-strain constitutive relation for
linear material Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mec ...
s is commonly known as
Hooke's law In physics, Hooke's law is an empirical law which states that the force () needed to extend or compress a spring (device), spring by some distance () Proportionality (mathematics)#Direct_proportionality, scales linearly with respect to that ...
. In its simplest form, the law defines the spring constant (or elasticity constant) ''k'' in a scalar equation, stating the tensile/compressive force is proportional to the extended (or contracted)
displacement Displacement may refer to: Physical sciences Mathematics and Physics *Displacement (geometry), is the difference between the final and initial position of a point trajectory (for instance, the center of mass of a moving object). The actual path ...
''x'': :F_i=-k x_i meaning the material responds linearly. Equivalently, in terms of the stress ''σ'',
Young's modulus Young's modulus E, the Young modulus, or the modulus of elasticity in tension or compression (i.e., negative tension), is a mechanical property that measures the tensile or compressive stiffness of a solid material when the force is applied leng ...
''E'', and strain ''ε'' (dimensionless): :\sigma = E \, \varepsilon In general, forces which deform solids can be normal to a surface of the material (normal forces), or tangential (shear forces), this can be described mathematically using the stress tensor: :\sigma_ = C_ \, \varepsilon_ \, \rightleftharpoons \, \varepsilon_ = S_ \, \sigma_ where ''C'' is the
elasticity tensor In physics, Hooke's law is an empirical law which states that the force () needed to extend or compress a spring by some distance () scales linearly with respect to that distance—that is, where is a constant factor characteristic of th ...
and ''S'' is the compliance tensor.


Solid-state deformations

Several classes of deformations in elastic materials are the following: ;
Plastic Plastics are a wide range of synthetic or semi-synthetic materials that use polymers as a main ingredient. Their plasticity makes it possible for plastics to be moulded, extruded or pressed into solid objects of various shapes. This adaptab ...
: The applied force induces non-recoverable deformations in the material when the stress (or elastic strain) reaches a critical magnitude, called the yield point. ;
Elastic Elastic is a word often used to describe or identify certain types of elastomer, elastic used in garments or stretchable fabrics. Elastic may also refer to: Alternative name * Rubber band, ring-shaped band of rubber used to hold objects togeth ...
: The material recovers its initial shape after deformation. :; Viscoelastic: If the time-dependent resistive contributions are large, and cannot be neglected. Rubbers and plastics have this property, and certainly do not satisfy Hooke's law. In fact, elastic hysteresis occurs. :; Anelastic: If the material is close to elastic, but the applied force induces additional time-dependent resistive forces (i.e. depend on rate of change of extension/compression, in addition to the extension/compression). Metals and ceramics have this characteristic, but it is usually negligible, although not so much when heating due to friction occurs (such as vibrations or shear stresses in machines). :; Hyperelastic: The applied force induces displacements in the material following a
strain energy density function A strain energy density function or stored energy density function is a scalar-valued function that relates the strain energy density of a material to the deformation gradient. : W = \hat(\boldsymbol) = \hat(\boldsymbol^T\cdot\boldsymbol) =\ ...
.


Collisions

The
relative speed The relative velocity \vec_ (also \vec_ or \vec_) is the velocity of an object or observer B in the rest frame of another object or observer A. Classical mechanics In one dimension (non-relativistic) We begin with relative motion in the classi ...
of separation ''v''separation of an object A after a collision with another object B is related to the relative speed of approach ''v''approach by the
coefficient of restitution The coefficient of restitution (COR, also denoted by ''e''), is the ratio of the final to initial relative speed between two objects after they collide. It normally ranges from 0 to 1 where 1 would be a perfectly elastic collision. A perfectl ...
, defined by Newton's experimental impact law: : e = \frac which depends on the materials A and B are made from, since the collision involves interactions at the surfaces of A and B. Usually , in which for completely elastic collisions, and for completely
inelastic collisions An inelastic collision, in contrast to an elastic collision, is a collision in which kinetic energy is not conserved due to the action of internal friction. In collisions of macroscopic bodies, some kinetic energy is turned into vibrational energ ...
. It is possible for to occur – for
superelastic Pseudoelasticity, sometimes called superelasticity, is an elastic (reversible) response to an applied stress, caused by a phase transformation between the austenitic and martensitic phases of a crystal. It is exhibited in shape-memory alloys. Ove ...
(or explosive) collisions.


Deformation of fluids

The drag equation gives the
drag force In fluid dynamics, drag (sometimes called air resistance, a type of friction, or fluid resistance, another type of friction or fluid friction) is a force acting opposite to the relative motion of any object moving with respect to a surrounding flu ...
''D'' on an object of cross-section area ''A'' moving through a fluid of density ''ρ'' at velocity ''v'' (relative to the fluid) :D=\fracc_d \rho A v^2 where the drag coefficient (dimensionless) ''cd'' depends on the geometry of the object and the drag forces at the interface between the fluid and object. For a Newtonian fluid of
viscosity The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the inte ...
''μ'', the
shear stress Shear stress, often denoted by (Greek: tau), is the component of stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. ''Normal stress'', on the ot ...
''τ'' is linearly related to the strain rate (transverse flow velocity
gradient In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p is the "direction and rate of fastest increase". If the gradi ...
) ∂''u''/∂''y'' (units ''s''−1). In a uniform shear flow: :\tau = \mu \frac, with ''u''(''y'') the variation of the flow velocity ''u'' in the cross-flow (transverse) direction ''y''. In general, for a Newtonian fluid, the relationship between the elements ''τ''''ij'' of the shear stress tensor and the deformation of the fluid is given by :\tau_ = 2 \mu \left( e_ - \frac13 \Delta \delta_ \right) with e_=\frac12 \left( \frac + \frac \right) and \Delta = \sum_k e_ = \text\; \mathbf, where ''v''''i'' are the components of the flow velocity vector in the corresponding ''x''''i'' coordinate directions, ''e''''ij'' are the components of the strain rate tensor, Δ is the volumetric strain rate (or dilatation rate) and ''δ''''ij'' is the Kronecker delta. The ''
ideal gas law The ideal gas law, also called the general gas equation, is the equation of state of a hypothetical ideal gas. It is a good approximation of the behavior of many gases under many conditions, although it has several limitations. It was first stat ...
'' is a constitutive relation in the sense the pressure ''p'' and volume ''V'' are related to the temperature ''T'', via the number of moles ''n'' of gas: :pV = nRT where ''R'' is the gas constant (J⋅K−1⋅mol−1).


Electromagnetism


Constitutive equations in electromagnetism and related areas

In both classical and
quantum physics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, qua ...
, the precise dynamics of a system form a set of coupled
differential equation In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, an ...
s, which are almost always too complicated to be solved exactly, even at the level of
statistical mechanics In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic be ...
. In the context of electromagnetism, this remark applies to not only the dynamics of free charges and currents (which enter Maxwell's equations directly), but also the dynamics of bound charges and currents (which enter Maxwell's equations through the constitutive relations). As a result, various approximation schemes are typically used. For example, in real materials, complex transport equations must be solved to determine the time and spatial response of charges, for example, the Boltzmann equation or the
Fokker–Planck equation In statistical mechanics, the Fokker–Planck equation is a partial differential equation that describes the time evolution of the probability density function of the velocity of a particle under the influence of drag forces and random forces, as ...
or the Navier–Stokes equations. For example, see magnetohydrodynamics,
fluid dynamics In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids— liquids and gases. It has several subdisciplines, including ''aerodynamics'' (the study of air and other gases in motion) an ...
, electrohydrodynamics,
superconductivity Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic flux fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike ...
, plasma modeling. An entire physical apparatus for dealing with these matters has developed. See for example,
linear response theory A linear response function describes the input-output relationship of a signal transducer such as a radio turning electromagnetic waves into music or a neuron turning Synapse, synaptic input into a response. Because of its many applications in infor ...
,
Green–Kubo relations The Green–Kubo relations ( Melville S. Green 1954, Ryogo Kubo 1957) give the exact mathematical expression for transport coefficients \gamma in terms of integrals of time correlation functions: :\gamma = \int_0^\infty \left\langle \dot(t) \dot( ...
and Green's function (many-body theory). These complex theories provide detailed formulas for the constitutive relations describing the electrical response of various materials, such as
permittivities In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter ''ε'' (epsilon), is a measure of the electric polarizability of a dielectric. A material with high permittivity polarizes more in r ...
, permeabilities, conductivities and so forth. It is necessary to specify the relations between displacement field D and E, and the magnetic H-field H and B, before doing calculations in electromagnetism (i.e. applying Maxwell's macroscopic equations). These equations specify the response of bound charge and current to the applied fields and are called constitutive relations. Determining the constitutive relationship between the auxiliary fields D and H and the E and B fields starts with the definition of the auxiliary fields themselves: :\begin \mathbf(\mathbf, t) &= \varepsilon_0 \mathbf(\mathbf, t) + \mathbf(\mathbf, t) \\ \mathbf(\mathbf, t) &= \frac \mathbf(\mathbf, t) - \mathbf(\mathbf, t), \end where P is the
polarization Polarization or polarisation may refer to: Mathematics *Polarization of an Abelian variety, in the mathematics of complex manifolds *Polarization of an algebraic form, a technique for expressing a homogeneous polynomial in a simpler fashion by ...
field and M is the
magnetization In classical electromagnetism, magnetization is the vector field that expresses the density of permanent or induced magnetic dipole moments in a magnetic material. Movement within this field is described by direction and is either Axial or Di ...
field which are defined in terms of microscopic bound charges and bound current respectively. Before getting to how to calculate M and P it is useful to examine the following special cases.


Without magnetic or dielectric materials

In the absence of magnetic or dielectric materials, the constitutive relations are simple: :\mathbf = \varepsilon_0\mathbf ,\quad \mathbf = \mathbf/\mu_0 where ''ε''0 and ''μ''0 are two universal constants, called the permittivity of
free space A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often dis ...
and permeability of free space, respectively.


Isotropic linear materials

In an (
isotropic Isotropy is uniformity in all orientations; it is derived . Precise definitions depend on the subject area. Exceptions, or inequalities, are frequently indicated by the prefix ' or ', hence ''anisotropy''. ''Anisotropy'' is also used to describe ...
) linear material, where P is proportional to E, and M is proportional to B, the constitutive relations are also straightforward. In terms of the polarization P and the magnetization M they are: :\mathbf = \varepsilon_0\chi_e\mathbf ,\quad \mathbf = \chi_m\mathbf, where ''χ''e and ''χ''m are the electric and
magnetic Magnetism is the class of physical attributes that are mediated by a magnetic field, which refers to the capacity to induce attractive and repulsive phenomena in other entities. Electric currents and the magnetic moments of elementary particle ...
susceptibilities of a given material respectively. In terms of D and H the constitutive relations are: :\mathbf = \varepsilon\mathbf ,\quad \mathbf = \mathbf/\mu, where ''ε'' and ''μ'' are constants (which depend on the material), called the permittivity and permeability, respectively, of the material. These are related to the susceptibilities by: :\varepsilon/\varepsilon_0 = \varepsilon_r = \chi_e + 1 ,\quad \mu / \mu_0 = \mu_r = \chi_m + 1


General case

For real-world materials, the constitutive relations are not linear, except approximately. Calculating the constitutive relations from first principles involves determining how P and M are created from a given E and B.The ''free'' charges and currents respond to the fields through the
Lorentz force In physics (specifically in electromagnetism) the Lorentz force (or electromagnetic force) is the combination of electric and magnetic force on a point charge due to electromagnetic fields. A particle of charge moving with a velocity in an elect ...
law and this response is calculated at a fundamental level using mechanics. The response of ''bound'' charges and currents is dealt with using grosser methods subsumed under the notions of magnetization and polarization. Depending upon the problem, one may choose to have ''no'' free charges whatsoever.
These relations may be empirical (based directly upon measurements), or theoretical (based upon
statistical mechanics In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic be ...
, transport theory or other tools of
condensed matter physics Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the sub ...
). The detail employed may be macroscopic or
microscopic The microscopic scale () is the scale of objects and events smaller than those that can easily be seen by the naked eye, requiring a lens (optics), lens or microscope to see them clearly. In physics, the microscopic scale is sometimes regarded a ...
, depending upon the level necessary to the problem under scrutiny. In general, the constitutive relations can usually still be written: :\mathbf = \varepsilon\mathbf ,\quad \mathbf = \mu^\mathbf but ''ε'' and ''μ'' are not, in general, simple constants, but rather functions of E, B, position and time, and tensorial in nature. Examples are: As a variation of these examples, in general materials are bianisotropic where D and B depend on both E and H, through the additional ''coupling constants'' ''ξ'' and ''ζ'': : \mathbf=\varepsilon \mathbf + \xi \mathbf \,,\quad \mathbf = \mu \mathbf + \zeta \mathbf. In practice, some materials properties have a negligible impact in particular circumstances, permitting neglect of small effects. For example: optical nonlinearities can be neglected for low field strengths; material dispersion is unimportant when frequency is limited to a narrow bandwidth; material absorption can be neglected for wavelengths for which a material is transparent; and
metal A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typicall ...
s with finite conductivity often are approximated at
microwave Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively. Different sources define different frequency ran ...
or longer wavelengths as perfect metals with infinite conductivity (forming hard barriers with zero skin depth of field penetration). Some man-made materials such as metamaterials and photonic crystals are designed to have customized permittivity and permeability.


Calculation of constitutive relations

The theoretical calculation of a material's constitutive equations is a common, important, and sometimes difficult task in theoretical condensed-matter physics and materials science. In general, the constitutive equations are theoretically determined by calculating how a molecule responds to the local fields through the
Lorentz force In physics (specifically in electromagnetism) the Lorentz force (or electromagnetic force) is the combination of electric and magnetic force on a point charge due to electromagnetic fields. A particle of charge moving with a velocity in an elect ...
. Other forces may need to be modeled as well such as lattice vibrations in crystals or bond forces. Including all of the forces leads to changes in the molecule which are used to calculate P and M as a function of the local fields. The local fields differ from the applied fields due to the fields produced by the polarization and magnetization of nearby material; an effect which also needs to be modeled. Further, real materials are not continuous media; the local fields of real materials vary wildly on the atomic scale. The fields need to be averaged over a suitable volume to form a continuum approximation. These continuum approximations often require some type of quantum mechanical analysis such as
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and ...
as applied to
condensed matter physics Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the sub ...
. See, for example, density functional theory,
Green–Kubo relations The Green–Kubo relations ( Melville S. Green 1954, Ryogo Kubo 1957) give the exact mathematical expression for transport coefficients \gamma in terms of integrals of time correlation functions: :\gamma = \int_0^\infty \left\langle \dot(t) \dot( ...
and Green's function. A different set of ''homogenization methods'' (evolving from a tradition in treating materials such as conglomerates and
laminate Lamination is the technique/process of manufacturing a material in multiple layers, so that the composite material achieves improved strength, stability, sound insulation, appearance, or other properties from the use of the differing materials ...
s) are based upon approximation of an inhomogeneous material by a homogeneous ''
effective medium In materials science, effective medium approximations (EMA) or effective medium theory (EMT) pertain to analytical or theoretical modeling that describes the macroscopic properties of composite materials. EMAs or EMTs are developed from averagin ...
'' Aspnes, D.E., "Local-field effects and effective-medium theory: A microscopic perspective", ''Am. J. Phys.'' 50, pp. 704–709 (1982). (valid for excitations with
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tro ...
s much larger than the scale of the inhomogeneity). The theoretical modeling of the continuum-approximation properties of many real materials often rely upon experimental measurement as well. For example, ''ε'' of an insulator at low frequencies can be measured by making it into a parallel-plate capacitor, and ''ε'' at optical-light frequencies is often measured by ellipsometry.


Thermoelectric and electromagnetic properties of matter

These constitutive equations are often used in
crystallography Crystallography is the experimental science of determining the arrangement of atoms in crystalline solids. Crystallography is a fundamental subject in the fields of materials science and solid-state physics (condensed matter physics). The wor ...
, a field of
solid-state physics Solid-state physics is the study of rigid matter, or solids, through methods such as quantum mechanics, crystallography, electromagnetism, and metallurgy. It is the largest branch of condensed matter physics. Solid-state physics studies how the l ...
.


Photonics


Refractive index In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, or ...

The (absolute)
refractive index In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, or ...
of a medium ''n'' (dimensionless) is an inherently important property of
geometric Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is ca ...
and
physical optics In physics, physical optics, or wave optics, is the branch of optics that studies interference, diffraction, polarization, and other phenomena for which the ray approximation of geometric optics is not valid. This usage tends not to include effec ...
defined as the ratio of the luminal speed in vacuum ''c''0 to that in the medium ''c'': : n = \frac = \sqrt = \sqrt where ''ε'' is the permittivity and ''ε''r the relative permittivity of the medium, likewise ''μ'' is the permeability and ''μ''r are the relative permeability of the medium. The vacuum permittivity is ''ε''0 and vacuum permeability is ''μ''0. In general, ''n'' (also ''ε''r) are complex numbers. The relative refractive index is defined as the ratio of the two refractive indices. Absolute is for on material, relative applies to every possible pair of interfaces; : n_ = \frac


Speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
in matter

As a consequence of the definition, the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
in matter is :c = \frac for special case of vacuum; and , :c_0 = \frac


Piezooptic effect The piezooptic effect is manifest as a change in refractive index, n, of a material caused by a change in pressure on that material. Early demonstrations of the piezooptic effect were done on liquids. The effect has since been demonstrated in so ...

The
piezooptic effect The piezooptic effect is manifest as a change in refractive index, n, of a material caused by a change in pressure on that material. Early demonstrations of the piezooptic effect were done on liquids. The effect has since been demonstrated in so ...
relates the stresses in solids ''σ'' to the dielectric impermeability ''a'', which are coupled by a fourth-rank tensor called the piezooptic coefficient Π (units K−1): :a_ = \Pi_\sigma_


Transport phenomena


Definitions


Definitive laws

There are several laws which describe the transport of matter, or properties of it, in an almost identical way. In every case, in words they read: :''Flux (density) is proportional to a gradient, the constant of proportionality is the characteristic of the material.'' In general the constant must be replaced by a 2nd rank tensor, to account for directional dependences of the material.


See also

*
Principle of material objectivity Walter Noll (January 7, 1925 June 6, 2017) was a mathematician, and Professor Emeritus at Carnegie Mellon University. He is best known for developing mathematical tools of classical mechanics, thermodynamics, and continuum mechanics. Biography B ...
*
Rheology Rheology (; ) is the study of the flow of matter, primarily in a fluid ( liquid or gas) state, but also as "soft solids" or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an appl ...


Notes


References

{{Reflist, 30em Elasticity (physics) Equations of physics Electric and magnetic fields in matter