HOME

TheInfoList



OR:

Conical scanning is a system used in early
radar Radar is a detection system that uses radio waves to determine the distance (''ranging''), angle, and radial velocity of objects relative to the site. It can be used to detect aircraft, ships, spacecraft, guided missiles, motor vehicles, w ...
units to improve their accuracy, as well as making it easier to steer the
antenna Antenna ( antennas or antennae) may refer to: Science and engineering * Antenna (radio), also known as an aerial, a transducer designed to transmit or receive electromagnetic (e.g., TV or radio) waves * Antennae Galaxies, the name of two collid ...
properly to point at a target. Conical scanning is similar in concept to the earlier
lobe switching Lobe switching is a method used on early radar sets to improve tracking accuracy. It uses two slightly separated antenna elements to send the beam slightly to either side of the midline of the antenna. The radar signal switched between the two an ...
concept used on some of the earliest radars, and many examples of lobe switching sets were modified in the field to conical scanning during
World War II World War II or the Second World War, often abbreviated as WWII or WW2, was a world war that lasted from 1939 to 1945. It involved the vast majority of the world's countries—including all of the great powers—forming two opposin ...
, notably the German
Würzburg radar The low-UHF band Würzburg radar was the primary ground-based tracking radar for the Wehrmacht's Luftwaffe and Kriegsmarine (German Navy) during World War II. Initial development took place before the war and the apparatus entered service in 1940 ...
. Antenna guidance can be made entirely automatic, as in the American
SCR-584 The SCR-584 (short for '' Set, Complete, Radio # 584'') was an automatic-tracking microwave radar developed by the MIT Radiation Laboratory during World War II. It was one of the most advanced ground-based radars of its era, and became one of the ...
. Potential failure modes and susceptibility to deception jamming led to the replacement of conical scan systems with
monopulse radar Monopulse radar is a radar system that uses additional encoding of the radio signal to provide accurate directional information. The name refers to its ability to extract range and direction from a single signal pulse. Monopulse radar avoids prob ...
sets. They are still used by the
Deep Space Network The NASA Deep Space Network (DSN) is a worldwide Telecommunications network, network of American spacecraft communication ground segment facilities, located in the United States (California), Spain (Madrid), and Australia (Canberra), that suppo ...
for maintaining communications links to
space probe A space probe is an artificial satellite that travels through space to collect scientific data. A space probe may orbit Earth; approach the Moon; travel through interplanetary space; flyby, orbit, or land or fly on other planetary bodies; or ent ...
s. The spin-stabilized
Pioneer 10 ''Pioneer 10'' (originally designated Pioneer F) is an American space probe, launched in 1972 and weighing , that completed the first mission to the planet Jupiter. Thereafter, ''Pioneer 10'' became the first of five artificial objects to ach ...
and
Pioneer 11 ''Pioneer 11'' (also known as ''Pioneer G'') is a robotic space probe launched by NASA on April 5, 1973, to study the asteroid belt, the environment around Jupiter and Saturn, solar winds, and cosmic rays. It was the first probe to encounter ...
probes used onboard conical scanning maneuvers to track Earth in its orbit.


Concept

A typical radar antenna commonly has a beam width of a few degrees. While this is adequate for locating the target in an
early warning An early warning system is a warning system that can be implemented as a Poset, chain of information communication systems and comprises sensors, Detection theory, event detection and decision support system, decision subsystems for early identi ...
role, it is not nearly accurate enough for
gun laying A gun is a ranged weapon designed to use a shooting tube (gun barrel) to launch projectiles. The projectiles are typically solid, but can also be pressurized liquid (e.g. in water guns/cannons, spray guns for painting or pressure washing, p ...
, which demands accuracies on the order of 0.1 degrees. It is possible to improve the beam width through the use of larger antennas, but this is often impractical. In order to monitor the direction of a designated target, it is only necessary to keep the antenna pointed directly at the target. Knowledge of the pointing direction of the antenna then gives knowledge of the target direction. In order to have the radar system follow a moving target automatically, it is necessary to have a control system that keeps the antenna beam pointing at the target as it moves. The radar receiver will get maximum returned signal strength when the target is in the beam center. If the beam is pointed directly at the target, when the target moves it will move out of the beam center and the received signal strength will drop. Circuitry designed to monitor any decrease in received signal strength can be used to control a servo motor that steers the antenna to follow the target motion. There are three difficulties with this method: # The radar will have no information as to which direction the target has moved, and therefore no indication as to which direction to move the antenna to follow it. # As the target moves away from the beam centre, the received power changes only very slowly at first. Thus the system is rather insensitive to antenna pointing errors. # Variations in target echo power caused by scintillation are interpreted as target motion.


Conical scanning

Conical scanning addresses this problem by moving the radar beam slightly off center from the antenna's midline, or ''boresight'', and then rotating it. Given an example antenna that generates a beam of 2 degrees width – fairly typical – a conical scanning radar might move the beam 1.5 degrees to one side of the centerline by offsetting the feed slightly. The resulting pattern, at any one instant in time, covers the midline of the antenna for about 0.5 degrees, and 1.5 degrees to the side. By spinning the feed horn with a motor, the pattern becomes a cone centered on the midline, extending 3 degrees across. The key concept is that a target located at the midline point will generate a constant return no matter where the lobe is currently pointed, whereas if it is to one side it will generate a strong return when the lobe is pointed in that general direction and a weak one when pointing away. Additionally, the portion covering the centerline is near the edge of the radar lobe, where sensitivity is falling off rapidly. An aircraft centered in the beam is in the area where even small motions will result in a noticeable change in return, growing much stronger along the direction the radar needs to move. The antenna control system is arranged to move the antenna in azimuth and elevation such that a constant return is obtained from the aircraft being tracked. Whilst use of the main lobe alone might allow an operator to "hunt" for the strongest return and thus aim the antenna within a degree or so in that "maximum return" area at the center of the lobe, with conical scanning much smaller movements can be detected, and accuracies under 0.1 degree are possible.


Construction

There are two ways to cause the redirection of the beam from the antenna's midline. The first is referred to as a ''rotated'' feed. As its name suggests, a feed horn is set just off the parabolic focal point which causes the energy to focus slightly off the antenna midline. The feed is then rotated around the focal point of the paraboloid to produce the conical rotation. The other system is a ''nutated'' feed. A nutated feed offsets the antenna at an angle to a fixed feed horn, and then rotates the antenna. A variation of a nutated feed makes the feed move in a small circle, rapidly and continuously changing the pointing direction of the beam. In this latter type, neither the feed nor the antenna revolves around the pointing axis of the antenna; only the pointing direction changes, tracing out a narrow cone. The primary difference between the two basic schemes is in polarization. As the feed horn in the rotated process spins, the polarization changes with the rotation and will thus be 90 degrees off in polarization when the feed is 90 degrees off its initial axis. As the feed horn is fixed in nutated feeds, no polarization changes occur. Most early systems used a rotated feed, due to its mechanical simplicity, but later systems often used nutated feeds in order to use the polarization information. In the U.S. Navy Mk. 25 gun fire control radar, spiral scan mode aided target acquisition. Basically conical scan (of the non-revolving nutating feed type), the size of the scan cone cyclically increased and decreased roughly twice a second. The scanned area was several degrees, in all. (Once the target was acquired, the operator switched to conical scan for tracking.) Since the lobe is being rotated around the midline of the antenna, conical scanning is only really appropriate for antennas with a circular cross section. This was the case for the Würzburg, which operated in the
microwave Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively. Different sources define different frequency ran ...
region. Most other forces used much longer-wavelength radars that would require
paraboloid In geometry, a paraboloid is a quadric surface that has exactly one axis of symmetry and no center of symmetry. The term "paraboloid" is derived from parabola, which refers to a conic section that has a similar property of symmetry. Every plane ...
antennas of truly enormous size, and instead used a "bedspring" arrangement of many small
dipole antenna In radio and telecommunications a dipole antenna or doublet is the simplest and most widely used class of antenna. The dipole is any one of a class of antennas producing a radiation pattern approximating that of an elementary electric dipole w ...
s arranged in front of a passive reflector. To arrange conical scanning on such a system would require all of the dipoles to be moved, an impractical solution. For this reason the
US Army The United States Army (USA) is the land service branch of the United States Armed Forces. It is one of the eight U.S. uniformed services, and is designated as the Army of the United States in the U.S. Constitution.Article II, section 2, cla ...
simply abandoned their early gun laying radar, the SCR-268. This was not particularly annoying, given that they were in the process of introducing their own microwave radar in the aftermath of the
Tizard Mission The Tizard Mission, officially the British Technical and Scientific Mission, was a British delegation that visited the United States during WWII to obtain the industrial resources to exploit the military potential of the research and development ( ...
. In the
SCR-584 The SCR-584 (short for '' Set, Complete, Radio # 584'') was an automatic-tracking microwave radar developed by the MIT Radiation Laboratory during World War II. It was one of the most advanced ground-based radars of its era, and became one of the ...
, the
MIT Radiation Laboratory The Radiation Laboratory, commonly called the Rad Lab, was a microwave and radar research laboratory located at the Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts. It was first created in October 1940 and operated until 31 ...
introduced automatic tracking. Automatic guidance for the antenna, and thus any slaved guns or weapons, can be added to a conical scan radar without too much trouble. The control system has to steer the antenna such that a constant amplitude return is received from the target. Unfortunately there are a number of factors that can dramatically change the reflected signal. For instance, changes in the target aircraft's direction can present different portions of the
fuselage The fuselage (; from the French ''fuselé'' "spindle-shaped") is an aircraft's main body section. It holds crew, passengers, or cargo. In single-engine aircraft, it will usually contain an engine as well, although in some amphibious aircraft t ...
to the antenna, and dramatically change the amount of signal being returned. In these cases, a conical scan radar might interpret this change in strength as a change in position. For instance, if the aircraft were to suddenly "brighten" when it was off-axis to the left, the circuitry might interpret this as being off to the right if the change occurs when the lobe is aligned in that direction. This problem can be solved by using two simultaneous overlapping receiver beams leading to the
monopulse radar Monopulse radar is a radar system that uses additional encoding of the radio signal to provide accurate directional information. The name refers to its ability to extract range and direction from a single signal pulse. Monopulse radar avoids prob ...
, so-named because it always compares signal strength from a single pulse against itself, thereby eliminating problems with all but impossibly fast changes in signal strength.


Conical-scan receive-only (COSRO)

COSRO systems do not modify the transmit signal sent from the antenna. Antenna waveguide in COSRO systems includes an RF received feedhorn structure that produces a left/right RF receive sample and an up/down RF receive sample. These two signals are multiplexed inside a waveguide device that has a rotating vane. The output of the multiplex device is a single RF signal and two position signals that indicate left/right and up/down. The COSRO technique does not transmit any signals that indicate the position of the rotating vane.


Antenna sampling

RF receive signals from multiple transmit pulses are combined mathematically to create a vertical and horizontal signal. The vertical signal is created by adding RF samples when the vane/feedhorn is in the up direction and subtracting RF samples when the vane/feedhorn is in the down direction. The horizontal signal is created by adding RF samples when the vane/feedhorn is in the left direction and subtracting RF samples when the vane/feedhorn is in the right direction. This produces a pair of angle error signals used to drive antenna positioning drive motors.


Jamming

Conical scan radars can be easily jammed. If the target knows the general operating parameters of the radar, it is possible to send out a false signal timed to grow and fade in the same pattern as the radar lobe, but inverted in strength. That is, the false signal is at its strongest when the radar signal is the weakest (the lobe is on the "far side" of the antenna compared to the aircraft), and weakest when the signal is the strongest (pointed at the aircraft). When added together with the "real" signal at the radar receiver, the resulting signal is "always strong", so the control system cannot make an accurate estimate as to where in the lobe pattern the target is located. Actually accomplishing this in hardware is not as difficult as it may sound. If one knows that the signal is rotated at 25 RPM, as it was in the Würzburg radar, the jammer is built to fade from maximum to zero at the same speed, 25 times a minute. Then all that is needed is to sync the signals up, which is accomplished by looking for the low point in the signal (which is generally easier to find) and triggering the pattern at that point. This system, known as inverse gain jamming, was used operationally by the
Royal Air Force The Royal Air Force (RAF) is the United Kingdom's air and space force. It was formed towards the end of the First World War on 1 April 1918, becoming the first independent air force in the world, by regrouping the Royal Flying Corps (RFC) and ...
against the Würzburg radar during World War II. It is possible to arrange a radar so the lobes are not being moved in the broadcaster, only the receiver. To do this, one adds a second antenna with the rotating lobe for reception only, a system known as COSRO, for ''Conical Scan on Receive Only'' (compare to LORO, a similar system used against
lobe switching Lobe switching is a method used on early radar sets to improve tracking accuracy. It uses two slightly separated antenna elements to send the beam slightly to either side of the midline of the antenna. The radar signal switched between the two an ...
radars). Although this denied lobing frequency information to the jammer in the aircraft, it was still possible to simply send out random spikes and thereby confuse the tracking system (or operator). This technique, called SSW for ''Swept Square Wave'', doesn't protect the aircraft with the same sort of effectiveness as inverse gain, but is better than nothing and often fairly effective.


References


External links

{{Commons, Radar *'
Radar Basics
'' Radar Antennas (radio)