HOME

TheInfoList



OR:

The
cosmological model Physical cosmology is a branch of cosmology concerned with the study of cosmological models. A cosmological model, or simply cosmology, provides a description of the largest-scale structures and dynamics of the universe and allows study of fu ...
of concentric (or homocentric) spheres, developed by Eudoxus, Callippus, and
Aristotle Aristotle (; 384–322 BC) was an Ancient Greek philosophy, Ancient Greek philosopher and polymath. His writings cover a broad range of subjects spanning the natural sciences, philosophy, linguistics, economics, politics, psychology, a ...
, employed
celestial spheres The celestial spheres, or celestial orbs, were the fundamental entities of the cosmological models developed by Plato, Eudoxus, Aristotle, Ptolemy, Copernicus, and others. In these celestial models, the apparent motions of the fixed star ...
all centered on the Earth. In this respect, it differed from the epicyclic and eccentric models with multiple centers, which were used by
Ptolemy Claudius Ptolemy (; , ; ; – 160s/170s AD) was a Greco-Roman mathematician, astronomer, astrologer, geographer, and music theorist who wrote about a dozen scientific treatises, three of which were important to later Byzantine science, Byzant ...
and other mathematical
astronomer An astronomer is a scientist in the field of astronomy who focuses on a specific question or field outside the scope of Earth. Astronomers observe astronomical objects, such as stars, planets, natural satellite, moons, comets and galaxy, galax ...
s until the time of
Copernicus Nicolaus Copernicus (19 February 1473 – 24 May 1543) was a Renaissance polymath who formulated a mathematical model, model of Celestial spheres#Renaissance, the universe that placed heliocentrism, the Sun rather than Earth at its cen ...
.


Origins of the concept of concentric spheres

Eudoxus of Cnidus Eudoxus of Cnidus (; , ''Eúdoxos ho Knídios''; ) was an Ancient Greece, ancient Greek Ancient Greek astronomy, astronomer, Greek mathematics, mathematician, doctor, and lawmaker. He was a student of Archytas and Plato. All of his original work ...
was the first astronomer to develop the concept of concentric spheres. He was originally a student at Plato's academy and is believed to have been influenced by the cosmological speculations of
Plato Plato ( ; Greek language, Greek: , ; born  BC, died 348/347 BC) was an ancient Greek philosopher of the Classical Greece, Classical period who is considered a foundational thinker in Western philosophy and an innovator of the writte ...
and
Pythagoras Pythagoras of Samos (;  BC) was an ancient Ionian Greek philosopher, polymath, and the eponymous founder of Pythagoreanism. His political and religious teachings were well known in Magna Graecia and influenced the philosophies of P ...
."Eudoxus of Cnidus." Complete Dictionary of Scientific Biography. Vol. 4. Detroit: Charles Scribner's Sons, 2008. 465–467. Gale Virtual Reference Library. Web. 2 June 2014. He came up with the idea of homocentric spheres in order to explain the perceived inconsistent motions of the planets and to develop a uniform model for accurately calculating the movement of celestial objects. None of his books have survived to the modern day and everything we know about his cosmological theories comes from the works of
Aristotle Aristotle (; 384–322 BC) was an Ancient Greek philosophy, Ancient Greek philosopher and polymath. His writings cover a broad range of subjects spanning the natural sciences, philosophy, linguistics, economics, politics, psychology, a ...
and Simplicius. According to these works, Eudoxus’ model had twenty-seven homocentric spheres with each sphere explaining a type of observable motion for each celestial object. Eudoxus assigns one sphere for the fixed stars which is supposed to explain their daily movement. He assigns three spheres to both the sun and the moon with the first sphere moving in the same manner as the sphere of the fixed stars. The second sphere explains the movement of the sun and the moon on the ecliptic plane. The third sphere was supposed to move on a “latitudinally inclined” circle and explain the latitudinal motion of the sun and the moon in the cosmos. Four spheres were assigned to Mercury,
Venus Venus is the second planet from the Sun. It is often called Earth's "twin" or "sister" planet for having almost the same size and mass, and the closest orbit to Earth's. While both are rocky planets, Venus has an atmosphere much thicker ...
,
Mars Mars is the fourth planet from the Sun. It is also known as the "Red Planet", because of its orange-red appearance. Mars is a desert-like rocky planet with a tenuous carbon dioxide () atmosphere. At the average surface level the atmosph ...
,
Jupiter Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a Jupiter mass, mass more than 2.5 times that of all the other planets in the Solar System combined a ...
, and
Saturn Saturn is the sixth planet from the Sun and the second largest in the Solar System, after Jupiter. It is a gas giant, with an average radius of about 9 times that of Earth. It has an eighth the average density of Earth, but is over 95 tim ...
which were the only known planets at that time. The first and second spheres of the planets moved exactly like the first two spheres of the sun and the moon. According to Simplicius, the third and fourth sphere of the planets were supposed to move in a way that created a curve known as a
hippopede In geometry, a hippopede () is a plane curve determined by an equation of the form :(x^2+y^2)^2=cx^2+dy^2, where it is assumed that and since the remaining cases either reduce to a single point or can be put into the given form with a rotation. ...
. The
hippopede In geometry, a hippopede () is a plane curve determined by an equation of the form :(x^2+y^2)^2=cx^2+dy^2, where it is assumed that and since the remaining cases either reduce to a single point or can be put into the given form with a rotation. ...
was a way to try to explain the retrograde motions of planets. Many historians of science, such as Michael J. Crowe, have argued that Eudoxus did not consider his system of concentric spheres to be a real representation of the universe but thought it was merely a mathematical model for calculating planetary motion.


Later additions to Eudoxus' model

Callippus, a contemporary of Eudoxus, attempted to improve his system by increasing the total number of homocentric spheres. He added two additional spheres for the sun and the moon as well as one additional sphere for Mars, Mercury, and Venus. These additional spheres were supposed to fix some of the calculation problems in Eudoxus’ original system. Callippus’ system was able to better predict the motions of certain celestial objects but his system still had many problems and was not able to account for many astronomical observations.
Aristotle Aristotle (; 384–322 BC) was an Ancient Greek philosophy, Ancient Greek philosopher and polymath. His writings cover a broad range of subjects spanning the natural sciences, philosophy, linguistics, economics, politics, psychology, a ...
developed his own system of concentric spheres in ''
Metaphysics Metaphysics is the branch of philosophy that examines the basic structure of reality. It is traditionally seen as the study of mind-independent features of the world, but some theorists view it as an inquiry into the conceptual framework of ...
'' and ''De Caelo'' (On the Heavens). He thought that both Eudoxus and Callippus had too few spheres within their models and added more spheres onto Callippus’ system. He added three spheres to Jupiter and Mars as well as four spheres to Venus, Mercury, the sun, and the moon for a total of fifty-five spheres. He later doubted the accuracy of his results and stated that he believed there were either forty seven or forty nine concentric spheres. Historians are unsure about how many spheres Aristotle thought there were in the cosmos with theories ranging from 43 to 55. Unlike Eudoxus, Aristotle believed that his system represented an actual model of the cosmos.


See also

*
Celestial spheres The celestial spheres, or celestial orbs, were the fundamental entities of the cosmological models developed by Plato, Eudoxus, Aristotle, Ptolemy, Copernicus, and others. In these celestial models, the apparent motions of the fixed star ...
*
Geocentric model In astronomy, the geocentric model (also known as geocentrism, often exemplified specifically by the Ptolemaic system) is a superseded scientific theories, superseded description of the Universe with Earth at the center. Under most geocentric m ...
* Historical models of the Solar System


Notes


Further reading

* * {{cite book , last1=Neugebauer , first1=Otto , title=Astronomy and History Selected Essays , date=1983 , publisher=Springer , isbn=0387908447 * Kieffer, John S. "Callippus." ''Dictionary of Scientific Biography'' 3:21-22.


External links


Working model and complete explanation of the Eudoxus's Spheres


Henry Mendell, Cal State U, LA

Craig McConnell, Ph.D., Cal State, Fullerton



Ancient Greek astronomy Early scientific cosmologies