Component Failure
   HOME

TheInfoList



OR:

Failure causes are defects in design, process, quality, or part application, which are the underlying cause of a failure or which initiate a process which leads to failure. Where failure depends on the user of the product or process, then
human error Human error refers to something having been done that was " not intended by the actor; not desired by a set of rules or an external observer; or that led the task or system outside its acceptable limits".Senders, J.W. and Moray, N.P. (1991) Human ...
must be considered.


Component failure / failure modes

A part failure mode is the way in which a component failed "functionally" on the component level. Often a part has only a few failure modes. For example, a relay may fail to open or close contacts on demand. The failure mechanism that caused this can be of many different kinds, and often multiple factors play a role at the same time. They include
corrosion Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engine ...
,
welding Welding is a fabrication (metal), fabrication process that joins materials, usually metals or thermoplastics, by using high heat to melt the parts together and allowing them to cool, causing Fusion welding, fusion. Welding is distinct from lower ...
of contacts due to an abnormal electric current, return spring fatigue failure, unintended command failure, dust accumulation and blockage of mechanism, etc. Seldom only one cause (hazard) can be identified that creates system failures. The real root causes can in theory in most cases be traced back to some kind of human error, e.g. design failure, operational errors, management failures, maintenance induced failures, specification failures, etc.


Failure scenario

A scenario is the complete identified possible sequence and combination of events, failures (failure modes), conditions, system states, leading to an end (failure) system state. It starts from causes (if known) leading to one particular end effect (the system failure condition). A failure scenario is for a system the same as the failure mechanism is for a component. Both result in a failure mode (state) of the system / component. Rather than the simple description of symptoms that many product users or process participants might use, the term failure scenario / mechanism refers to a rather complete description, including the preconditions under which failure occurs, how the thing was being used, proximate and ultimate/final
causes Causes, or causality, is the relationship between one event and another. It may also refer to: * Causes (band), an indie band based in the Netherlands * Causes (company) Causes.com is a civic-technology app and website that enables users to orga ...
(if known), and any subsidiary or resulting failures that result. The term is part of the engineering
lexicon A lexicon is the vocabulary of a language or branch of knowledge (such as nautical or medical). In linguistics, a lexicon is a language's inventory of lexemes. The word ''lexicon'' derives from Koine Greek language, Greek word (), neuter of () ...
, especially of engineers working to test and debug products or processes. Carefully observing and describing failure conditions, identifying whether failures are reproducible or transient, and hypothesizing what combination of conditions and sequence of events led to failure is part of the process of fixing design flaws or improving future
iterations Iteration is the repetition of a process in order to generate a (possibly unbounded) sequence of outcomes. Each repetition of the process is a single iteration, and the outcome of each iteration is then the starting point of the next iteration. ...
. The term may be applied to mechanical systems failure.


Types of failure causes


Mechanical failure

Some types of mechanical failure mechanisms are: excessive deflection,
buckling In structural engineering, buckling is the sudden change in shape (deformation) of a structural component under load, such as the bowing of a column under compression or the wrinkling of a plate under shear. If a structure is subjected to a gr ...
, ductile fracture,
brittle fracture Fracture is the separation of an object or material into two or more pieces under the action of stress. The fracture of a solid usually occurs due to the development of certain displacement discontinuity surfaces within the solid. If a displa ...
,
impact Impact may refer to: * Impact (mechanics), a high force or shock (mechanics) over a short time period * Impact, Texas, a town in Taylor County, Texas, US Science and technology * Impact crater, a meteor crater caused by an impact event * Impac ...
, creep, relaxation,
thermal shock Thermal shock is a type of rapidly transient mechanical load. By definition, it is a mechanical load caused by a rapid change of temperature of a certain point. It can be also extended to the case of a thermal gradient, which makes different par ...
,
wear Wear is the damaging, gradual removal or deformation of material at solid surfaces. Causes of wear can be mechanical (e.g., erosion) or chemical (e.g., corrosion). The study of wear and related processes is referred to as tribology. Wear in m ...
, corrosion, stress corrosion cracking, and various types of fatigue. Each produces a different type of fracture surface, and other indicators near the fracture surface(s). The way the product is loaded, and the loading history are also important factors which determine the outcome. Of critical importance is design geometry because
stress concentrations In solid mechanics, a stress concentration (also called a stress raiser or a stress riser) is a location in an object where the stress is significantly greater than the surrounding region. Stress concentrations occur when there are irregularitie ...
can magnify the applied load locally to very high levels, and from which cracks usually grow. Over time, as more is understood about a failure, the failure cause evolves from a description of symptoms and outcomes (that is, effects) to a systematic and relatively abstract
model A model is an informative representation of an object, person or system. The term originally denoted the plans of a building in late 16th-century English, and derived via French and Italian ultimately from Latin ''modulus'', a measure. Models c ...
of how, when, and why the failure comes about (that is, causes). The more complex the product or situation, the more necessary a good understanding of its failure cause is to ensuring its proper operation (or repair).
Cascading failure A cascading failure is a failure in a system of interconnected parts in which the failure of one or few parts leads to the failure of other parts, growing progressively as a result of positive feedback. This can occur when a single part fails, i ...
s, for example, are particularly complex failure causes.
Edge case An edge case is a problem or situation that occurs only at an extreme (maximum or minimum) operating parameter. For example, a stereo speaker might noticeably distort audio when played at maximum volume, even in the absence of any other extreme ...
s and
corner case In engineering, a corner case (or pathological case) involves a problem or situation that occurs only outside normal operating parameters—specifically one that manifests itself when multiple environmental variables or conditions are simultaneou ...
s are situations in which complex, unexpected, and difficult-to-debug problems often occur.


Failure by corrosion

Materials can be degraded by their environment by
corrosion Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engine ...
processes, such as
rusting Rust is an iron oxide, a usually reddish-brown oxide formed by the reaction of iron and oxygen in the catalytic presence of water or air moisture. Rust consists of hydrous iron(III) oxides (Fe2O3·nH2O) and iron(III) oxide-hydroxide (FeO(OH ...
in the case of
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in f ...
and
steel Steel is an alloy made up of iron with added carbon to improve its strength and fracture resistance compared to other forms of iron. Many other elements may be present or added. Stainless steels that are corrosion- and oxidation-resistant ty ...
. Such processes can also be affected by load in the mechanisms of
stress corrosion cracking Stress corrosion cracking (SCC) is the growth of crack formation in a corrosive environment. It can lead to unexpected and sudden failure of normally ductile metal alloys subjected to a tensile stress, especially at elevated temperature. SCC ...
and
environmental stress cracking Environmental Stress Cracking (ESC) is one of the most common causes of unexpected brittle failure of thermoplastic (especially amorphous) polymers known at present. According to ASTM D883, stress cracking is defined as "an external or intern ...
.


See also

*
Failure analysis Failure analysis is the process of collecting and analyzing data to determine the cause of a failure, often with the goal of determining corrective actions or liability. According to Bloch and Geitner, ”machinery failures reveal a reaction chain o ...
*
Failure mode and effects analysis Failure mode and effects analysis (FMEA; often written with "failure modes" in plural) is the process of reviewing as many components, assemblies, and subsystems as possible to identify potential failure modes in a system and their causes and effe ...
(FMEA) *
Failure modes, effects, and diagnostic analysis Failure modes, effects, and diagnostic analysis (FMEDA) is a systematic analysis technique to obtain subsystem / product level failure rates, failure modes and diagnostic capability. The FMEDA technique considers: * All components of a design, * The ...
(FMEDA) *
Failure rate Failure rate is the frequency with which an engineered system or component fails, expressed in failures per unit of time. It is usually denoted by the Greek letter λ (lambda) and is often used in reliability engineering. The failure rate of a ...
*
Forensic electrical engineering Forensic electrical engineering is a branch of forensic engineering, and is concerned with investigating electrical failures and accidents in a legal context. Many forensic electrical engineering investigations apply to fires suspected to be cau ...
*
Forensic engineering Forensic engineering has been defined as ''"the investigation of failures - ranging from serviceability to catastrophic - which may lead to legal activity, including both civil and criminal".'' It includes the investigation of materials, product ...
*
Hazard analysis A hazard analysis is used as the first step in a process used to assess risk. The result of a hazard analysis is the identification of different types of hazards. A hazard is a potential condition and exists or not (probability is 1 or 0). It may, ...
*
Ultimate failure In mechanical engineering, ultimate failure describes the breaking of a material. In general there are two types of failure: fracture and buckling. Fracture of a material occurs when either an internal or external crack elongates the width or len ...


Notes

{{DEFAULTSORT:Failure Causes Failure Reliability engineering Maintenance