Comparative Planetology
   HOME

TheInfoList



OR:

Comparative planetary science or comparative planetology is a branch of space science and planetary science in which different natural processes and systems are studied by their effects and phenomena on and between multiple
bodies Bodies may refer to: * The plural of body * ''Bodies'' (2004 TV series), BBC television programme * Bodies (upcoming TV series), an upcoming British crime thriller limited series * "Bodies" (''Law & Order''), 2003 episode of ''Law & Order'' * ...
. The planetary processes in question include geology, hydrology, atmospheric physics, and interactions such as impact cratering, space weathering, and magnetospheric physics in the solar wind, and possibly biology, via astrobiology. Comparison of multiple bodies assists the researcher, if for no other reason than the Earth is far more accessible than any other body. Those distant bodies may then be evaluated in the context of processes already characterized on Earth. Conversely, other bodies (including extrasolar ones) may provide additional examples, edge cases, and counterexamples to earthbound processes; without a greater context, studying these phenomena in relation to Earth alone may result in low sample sizes and observational biases.


Background

The term "comparative planetology" was coined by
George Gamow George Gamow (March 4, 1904 – August 19, 1968), born Georgiy Antonovich Gamov ( uk, Георгій Антонович Гамов, russian: Георгий Антонович Гамов), was a Russian-born Soviet and American polymath, theoret ...
, who reasoned that to fully understand our own planet, we must study others. Poldervaart focused on the Moon, stating "An adequate picture of this original planet and its development to the present earth is of great significance, is in fact the ultimate goal of geology as the science leading to knowledge and understanding of earth's history."


Geology, geochemistry, and geophysics

All terrestrial planets (and some satellites, such as the Moon) are essentially composed of
silicates In chemistry, a silicate is any member of a family of polyatomic anions consisting of silicon and oxygen, usually with the general formula , where . The family includes orthosilicate (), metasilicate (), and pyrosilicate (, ). The name i ...
wrapped around iron cores. The large outer Solar System moons and Pluto have more ice, and less rock and metal, but still undergo analogous processes.


Volcanism

Volcanism on Earth is largely
lava Lava is molten or partially molten rock (magma) that has been expelled from the interior of a terrestrial planet (such as Earth) or a moon onto its surface. Lava may be erupted at a volcano or through a fracture in the crust, on land or un ...
-based. Other terrestrial planets display volcanic features assumed to be lava-based, evaluated in the context of analogues readily studied on Earth. For example, Jupiter's moon Io displays extant volcanism, including lava flows. These flows were initially inferred to be composed mostly of various forms of molten elemental sulfur, based on analysis of imaging done by the ''Voyager'' probes. However, Earth-based infrared studies done in the 1980s and 1990s caused the consensus to shift in favor of a primarily silicate-based model, with sulfur playing a secondary role. Much of the surface of
Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury. In the English language, Mars is named for the Roman god of war. Mars is a terrestrial planet with a thin at ...
is composed of various
basalt Basalt (; ) is an aphanitic (fine-grained) extrusive igneous rock formed from the rapid cooling of low-viscosity lava rich in magnesium and iron (mafic lava) exposed at or very near the surface of a rocky planet or moon. More than 90 ...
s considered analogous to Hawaiian basalts, by their spectra and ''in situ'' chemical analyses (including
Martian meteorites A Martian meteorite is a rock that formed on Mars, was ejected from the planet by an impact event, and traversed interplanetary space before landing on Earth as a meteorite. , 277 meteorites had been classified as Martian, less than half a perc ...
). Mercury and Earth's Moon similarly feature large areas of basalts, formed by ancient volcanic processes. Surfaces in the polar regions show polygonal morphologies, also seen on Earth. In addition to basalt flows, Venus is home to a large number of
pancake dome A pancake dome is an unusual type of lava dome found on the planet Venus. They are widely scattered on that planet and often form groups or clusters, though with smaller numbers of pancake domes in each group than is typical for the more common sh ...
volcanoes created by highly viscous silica-rich lava flows. These domes lack a known Earth analogue. They do bear some morphological resemblance to terrestrial rhyolite-dacite
lava domes In volcanology, a lava dome is a circular mound-shaped protrusion resulting from the slow extrusion of viscous lava from a volcano. Dome-building eruptions are common, particularly in convergent plate boundary settings. Around 6% of erupti ...
, although the pancake domes are much flatter and uniformly round in nature. Certain regions further out in the Solar System exhibit
cryovolcanism A cryovolcano (sometimes informally called an ice volcano) is a type of volcano that erupts volatiles such as water, ammonia or methane into an extremely cold environment that is at or below their freezing point. The process of formation is know ...
, a process not seen anywhere on earth. Cryovolcanism is studied through laboratory experiments, conceptual and numerical modeling, and by cross-comparison to other examples in the field. Examples of bodies with cryovolcanic features include
comet A comet is an icy, small Solar System body that, when passing close to the Sun, warms and begins to release gases, a process that is called outgassing. This produces a visible atmosphere or coma, and sometimes also a tail. These phenomena ...
s, some asteroids and
Centaurs A centaur ( ; grc, κένταυρος, kéntauros; ), or occasionally hippocentaur, is a creature from Greek mythology with the upper body of a human and the lower body and legs of a horse. Centaurs are thought of in many Greek myths as being ...
,
Mars Mars is the fourth planet from the Sun and the second-smallest planet in the Solar System, only being larger than Mercury. In the English language, Mars is named for the Roman god of war. Mars is a terrestrial planet with a thin at ...
,
Europa Europa may refer to: Places * Europe * Europa (Roman province), a province within the Diocese of Thrace * Europa (Seville Metro), Seville, Spain; a station on the Seville Metro * Europa City, Paris, France; a planned development * Europa Cliff ...
,
Enceladus Enceladus is the sixth-largest moon of Saturn (19th largest in the Solar System). It is about in diameter, about a tenth of that of Saturn's largest moon, Titan. Enceladus is mostly covered by fresh, clean ice, making it one of the most refle ...
,
Triton Triton commonly refers to: * Triton (mythology), a Greek god * Triton (moon), a satellite of Neptune Triton may also refer to: Biology * Triton cockatoo, a parrot * Triton (gastropod), a group of sea snails * ''Triton'', a synonym of ''Triturus' ...
, and possibly Titan,
Ceres Ceres most commonly refers to: * Ceres (dwarf planet), the largest asteroid * Ceres (mythology), the Roman goddess of agriculture Ceres may also refer to: Places Brazil * Ceres, Goiás, Brazil * Ceres Microregion, in north-central Goiás ...
,
Pluto Pluto (minor-planet designation: 134340 Pluto) is a dwarf planet in the Kuiper belt, a ring of bodies beyond the orbit of Neptune. It is the ninth-largest and tenth-most-massive known object to directly orbit the Sun. It is the largest ...
, and Eris. The trace dopants of Europa's ice are currently postulated to contain sulfur. This is being evaluated via a Canadian sulfate spring as an analogue, in preparation for future Europa probes. Small bodies such as comets, some asteroid types, and dust grains, on the other hand, serve as counterexamples. Assumed to have experienced little or no heating, these materials may contain (or be) samples representing the early Solar System, which have since been erased from Earth or any other large body. Some extrasolar planets are covered entirely in lava oceans, and some are
tidally locked Tidal locking between a pair of co-orbiting astronomical bodies occurs when one of the objects reaches a state where there is no longer any net change in its rotation rate over the course of a complete orbit. In the case where a tidally locked bo ...
planets, whose star-facing hemisphere is entirely lava.


Cratering

The craters observed on the Moon were once assumed to be volcanic. Earth, by comparison, did not show a similar crater count, nor a high frequency of large meteor events, which would be expected as two nearby bodies should experience similar impact rates. Eventually this volcanism model was overturned, as numerous Earth craters (demonstrated by e. g.,
shatter cone Shatter cones are rare geological features that are only known to form in the bedrock beneath meteorite impact craters or underground nuclear explosions. They are evidence that the rock has been subjected to a shock with pressures in the rang ...
s,
shocked quartz Shocked quartz is a form of quartz that has a microscopic structure that is different from normal quartz. Under intense pressure (but limited temperature), the crystalline structure of quartz is deformed along planes inside the crystal. These pl ...
and other
impactite Impactite is rock created or modified by one or more impacts of a meteorite. Impactites are considered metamorphic rock, because their source materials were modified by the heat and pressure of the impact. On Earth, impactites consist primarily o ...
s, and possibly
spall Spall are fragments of a material that are broken off a larger solid body. It can be produced by a variety of mechanisms, including as a result of projectile impact, corrosion, weathering, cavitation, or excessive rolling pressure (as in a ba ...
) were found, after having been eroded over geologic time. Craters formed by larger and larger ordnance also served as models. The Moon, on the other hand, shows no atmosphere or hydrosphere, and could thus accumulate and preserve impact craters over billions of years despite a low impact rate at any one time. In addition, more searches by more groups with better equipment highlighted the great number of asteroids, presumed to have been even more numerous in earlier Solar System periods. As on Earth, a low crater count on other bodies indicates young surfaces. This is particularly credible if nearby regions or bodies show heavier cratering. Young surfaces, in turn, indicate atmospheric, tectonic or volcanic, or hydrological processing on large bodies and comets, or dust redistribution or a relatively recent formation on asteroids (i. e., splitting from a parent body). Examination of the cratering record on multiple bodies, at multiple areas in the Solar System, points to a
Late Heavy Bombardment The Late Heavy Bombardment (LHB), or lunar cataclysm, is a hypothesized event thought to have occurred approximately 4.1 to 3.8 billion years (Ga) ago, at a time corresponding to the Neohadean and Eoarchean eras on Earth. According to the hypot ...
, which in turn gives evidence of the Solar System's early history. However, the Late Heavy Bombardment as currently proposed has some issues and is not completely accepted. One model for Mercury's exceptionally high density compared to other terrestrial planets is the stripping off of a significant amount of crust and/or mantle from extremely heavy bombardment.


Differentiation

As a large body, Earth can efficiently retain its internal heat (from its initial formation plus
decay Decay may refer to: Science and technology * Bit decay, in computing * Software decay, in computing * Distance decay, in geography * Decay time (fall time), in electronics Biology * Decomposition of organic matter * Tooth decay (dental caries ...
of its
radioisotopes A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferr ...
) over the long timescale of the Solar System. It thus retains a molten
core Core or cores may refer to: Science and technology * Core (anatomy), everything except the appendages * Core (manufacturing), used in casting and molding * Core (optical fiber), the signal-carrying portion of an optical fiber * Core, the centra ...
, and has differentiated- dense materials have sunk to the core, while light materials float to form a crust. Other bodies, by comparison, may or may not have differentiated, based on their formation history, radioisotope content, further energy input via bombardment, distance from the Sun, size, etc. Studying bodies of various sizes and distances from the Sun provides examples and places constraints on the differentiation process. Differentiation itself is evaluated indirectly, by the mineralogy of a body's surface, versus its expected bulk density and mineralogy, or via shape effects due to slight variations in gravity. Differentiation may also be measured directly, by the higher-order terms of a body's gravity field as measured by a flyby or gravitational assist, and in some cases by librations. Edge cases include Vesta and some of the larger moons, which show differentiation but are assumed to have since fully solidified. The question of whether Earth's Moon has solidified, or retains some molten layers, has not been definitively answered. Additionally, differentiation processes are expected to vary along a continuum. Bodies may be composed of lighter and heavier rocks and metals, a high water ice and volatiles content (with less mechanical strength) in cooler regions of the Solar System, or primarily ices with a low rock/metal content even farther from the Sun. This continuum is thought to record the varying chemistries of the early Solar System, with refractories surviving in warm regions, and volatiles driven outward by the young Sun. The cores of planets are inaccessible, studied indirectly by seismometry, gravimetry, and in some cases magnetometry. However, iron and stony-iron meteorites are likely fragments from the cores of parent bodies which have partially or completely differentiated, then shattered. These meteorites are thus the only means of directly examining deep-interior materials and their processes.
Gas giant A gas giant is a giant planet composed mainly of hydrogen and helium. Gas giants are also called failed stars because they contain the same basic elements as a star. Jupiter and Saturn are the gas giants of the Solar System. The term "gas giant" ...
planets represent another form of differentiation, with multiple fluid layers by density. Some distinguish further between true gas giants, and
ice giant An ice giant is a giant planet composed mainly of elements heavier than hydrogen and helium, such as oxygen, carbon, nitrogen, and sulfur. There are two ice giants in the Solar System: Uranus and Neptune. In astrophysics and planetary scienc ...
s further from the Sun.


Tectonics

In turn, a molten core may allow plate tectonics, of which Earth shows major features. Mars, as a smaller body than Earth, shows no current tectonic activity, nor mountain ridges from geologically recent activity. This is assumed to be due to an interior that has cooled faster than the Earth (see geomagnetism below). An edge case may be Venus, which does not appear to have extant tectonics. However, in its history, it likely has had tectonic activity but lost it. It is possible tectonic activity on Venus may still be sufficient to restart after a long era of accumulation. Io, despite having high volcanism, does not show any tectonic activity, possibly due to sulfur-based magmas with higher temperatures, or simply higher volumetric fluxes. Meanwhile, Vesta's fossae may be considered a form of tectonics, despite that body's small size and cool temperatures. Europa is a key demonstration of outer-planet tectonics. Its surface shows movement of ice blocks or rafts, strike-slip faults, and possibly
diapirs A diapir (; , ) is a type of igneous intrusion in which a more mobile and ductily deformable material is forced into brittle overlying rocks. Depending on the tectonic environment, diapirs can range from idealized mushroom-shaped Rayleigh–T ...
. The question of extant tectonics is far less certain, possibly having been replaced by local cryomagmatism. Ganymede and Triton may contain tectonically or cryovolcanically resurfaced areas, and Miranda's irregular terrains may be tectonic.
Earthquake An earthquake (also known as a quake, tremor or temblor) is the shaking of the surface of the Earth resulting from a sudden release of energy in the Earth's lithosphere that creates seismic waves. Earthquakes can range in intensity, fr ...
s are well-studied on Earth, as multiple
seismometer A seismometer is an instrument that responds to ground noises and shaking such as caused by earthquakes, volcanic eruptions, and explosions. They are usually combined with a timing device and a recording device to form a seismograph. The outpu ...
s or large arrays can be used to derive quake waveforms in multiple dimensions. The Moon is the only other body to successfully receive a seismometer array; "marsquakes" and the mars interior are based on simple models and Earth-derived assumptions. Venus has received negligible seismometry. Gas giants may in turn show different forms of heat transfer and mixing. Furthermore, gas giants show different heat effects by size and distance to the Sun. Uranus shows a net negative heat budget to space, but the others (including Neptune, farther out) are net positive.


Geomagnetism

Two terrestrial planets (Earth and Mercury) display magnetospheres, and thus have molten metal layers. Similarly, all four gas giants have magnetospheres, which indicate layers of conductive fluids. Ganymede also shows a weak magnetosphere, taken as evidence of a subsurface layer of salt water, while the volume around Rhea shows symmetrical effects which may be rings or a magnetic phenomenon. Of these, Earth's magnetosphere is by far the most accessible, including from the surface. It is therefore the most studied, and extraterrestrial magnetospheres are examined in light of prior Earth studies. Still, differences exist between magnetospheres, pointing to areas needing further research. Jupiter's magnetosphere is stronger than the other gas giants, while Earth's is stronger than Mercury's. Mercury and Uranus have offset magnetospheres, which have no satisfactory explanation yet. Uranus' tipped axis causes its magnetotail to corkscrew behind the planet, with no known analogue. Future Uranian studies may show new magnetospheric phenomena. Mars shows remnants of an earlier, planetary-scale magnetic field, with stripes as on Earth. This is taken as evidence that the planet had a molten metal core in its prior history, allowing both a magnetosphere and tectonic activity (as on Earth). Both of these have since dissipated. Earth's Moon shows localized magnetic fields, indicating some process other than a large, molten metal core. This may be the source of lunar swirls, not seen on Earth.


Geochemistry

Apart from their distance to the Sun, different bodies show chemical variations indicating their formation and history. Neptune is denser than Uranus, taken as one piece of evidence that the two may have switched places in the early Solar System. Comets show both high volatile content, and grains containing refractory materials. This also indicates some mixing of materials through the Solar System when those comets formed. Mercury's inventory of materials by volatility is being used to evaluate different models for its formation and/or subsequent modification. Isotopic abundances indicate processes over the history of the Solar System. To an extent, all bodies formed from the presolar nebula. Various subsequent processes then alter elemental and isotopic ratios. The gas giants in particular have enough gravity to retain primary atmospheres, taken largely from the presolar nebula, as opposed to the later outgassing and reactions of secondary atmospheres. Differences in gas giant atmospheres compared to solar abundances then indicate some process in that planet's history. Meanwhile, gases at small planets such as Venus and Mars have isotopic differences indicating
atmospheric escape Atmospheric escape is the loss of planetary atmospheric gases to outer space. A number of different mechanisms can be responsible for atmospheric escape; these processes can be divided into thermal escape, non-thermal (or suprathermal) escape, and ...
processes. The various modifications of surface minerals, or
space weathering Space weathering is the type of weathering that occurs to any object exposed to the harsh environment of outer space. Bodies without atmospheres (including the Moon, Mercury, the asteroids, comets, and most of the moons of other planets) take on ...
, is used to evaluate meteorite and asteroid types and ages. Rocks and metals shielded by atmospheres (particularly thick ones), or other minerals, experience less weathering and fewer implantation chemistries and cosmic ray tracks. Asteroids are currently graded by their spectra, indicating surface properties and mineralogies. Some asteroids appear to have less space weathering, by various processes including a relatively recent formation date or a "freshening" event. As Earth's minerals are well shielded, space weathering is studied via extraterrestrial bodies, and preferably multiple examples.
Kuiper Belt Objects The Kuiper belt () is a circumstellar disc in the outer Solar System, extending from the orbit of Neptune at 30 astronomical units (AU) to approximately 50 AU from the Sun. It is similar to the asteroid belt, but is far larger—20 times ...
display very weathered or in some cases very fresh surfaces. As the long distances result in low spatial and spectral resolutions, KBO surface chemistries are currently evaluated via analogous moons and asteroids closer to Earth.


Aeronomy and atmospheric physics

Earth's atmosphere is far thicker than that of Mars, while far thinner than Venus'. In turn, the envelopes of gas giants are a different class entirely, and show their own gradations. Meanwhile, smaller bodies show tenuous atmospheres ("surface-bound exospheres"), with the exception of Titan and arguably Triton. Comets vary between negligible atmospheres in the outer solar system, and active comas millions of miles across at perihelion. Exoplanets may in turn possess atmospheric properties known and unknown in our star system.


Aeronomy

Atmospheric escape Atmospheric escape is the loss of planetary atmospheric gases to outer space. A number of different mechanisms can be responsible for atmospheric escape; these processes can be divided into thermal escape, non-thermal (or suprathermal) escape, and ...
is largely a thermal process. The atmosphere a body can retain therefore varies from the warmer inner Solar System, to the cooler outer regions. Different bodies in different Solar System regions provide analogous or contrasting examples. The atmosphere of Titan is considered analogous to an early, colder Earth; the atmosphere of Pluto is considered analogous to an enormous comet. The presence or absence of a magnetic field affects an upper atmosphere, and in turn the overall atmosphere. Impacts of
solar wind The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between . The composition of the sol ...
particles create chemical reactions and ionic species, which may in turn affect magnetospheric phenomena. Earth serves as a counterexample to Venus and Mars, which have no planetary magnetospheres, and to Mercury, with a magnetosphere but negligible atmosphere. Jupiter's moon Io creates sulfur emissions, and a feature of sulfur and some sodium around that planet. Similarly, Earth's Moon has trace sodium emissions, and a far weaker tail. Mercury also has a trace sodium atmosphere. Jupiter itself is assumed to have some characteristics of extrasolar "super Jupiters" and brown dwarves.


Seasons

Uranus, tipped on its side, is postulated to have seasonal effects far stronger than on Earth. Similarly, Mars is postulated to have varied its
axial tilt In astronomy, axial tilt, also known as obliquity, is the angle between an object's rotational axis and its orbital axis, which is the line perpendicular to its orbital plane; equivalently, it is the angle between its equatorial plane and orb ...
over eons, and to a far greater extent than on Earth. This is hypothesized to have dramatically altered not only seasons but climates on Mars, for which some evidence has been observed. Venus has negligible tilt, eliminating seasons, and a slow, retrograde rotation, causing different diurnal effects than on Earth and Mars.


Clouds and haze layers

From Earth, a planetwide cloud layer is the dominant feature of Venus in the visible spectrum; this is also true of Titan. Venus' cloud layer is composed of sulfur dioxide particles, while Titan's is a mixture of organics. The gas giant planets display clouds or belts of various compositions, including ammonia and methane.


Circulation and winds

Venus and Titan, and to a lesser extent Earth, are superrotators- the atmosphere turns about the planet faster than the surface beneath. While these atmospheres share physical processes, they exhibit diverse characteristics.
Hadley cell The Hadley cell, named after George Hadley, is a global-scale tropical atmospheric circulation that features air rising near the equator, flowing poleward at a height of 10 to 15 kilometers above the earth's surface, descending in the subtropics ...
s, first postulated and confirmed on Earth, are seen in different forms in other atmospheres. Earth has Hadley cells north and south of its equator, leading to additional cells by latitude. Mars' Hadley circulation is offset from its equator. Titan, a far smaller body, likely has one enormous cell, flipping polarity from northerly to southerly with its seasons. The bands of Jupiter are thought to be numerous Hadley-like cells by latitude.


Storms and cyclonic activity

The large storms seen on the gas giants are considered analogous to Earth cyclones. However, this is an imperfect metaphor as expected, due to the large differences in sizes, temperature, and composition between Earth and the gas giants, and even between gas giants. Polar vortices were observed on Venus and Saturn. In turn, Earth's thinner atmosphere shows weaker polar vorticity and effects.


Lightning and aurorae

Both
lightning Lightning is a naturally occurring electrostatic discharge during which two electrically charged regions, both in the atmosphere or with one on the ground, temporarily neutralize themselves, causing the instantaneous release of an avera ...
and aurorae have been observed on other bodies after extensive study at Earth. Lightning has been detected on Venus, and may be a sign of active volcanism on that planet, as
volcanic lightning Volcanic lightning is an electrical discharge caused by a volcanic eruption rather than from an ordinary thunderstorm. Volcanic lightning arises from colliding, fragmenting particles of volcanic ash (and sometimes ice), which generate static e ...
is known on Earth. Aurorae have been observed on Jupiter and its moon Ganymede.


Comparative climatology

An understanding of the evolutionary histories and current states of the Venus and Mars climates is directly relevant for studies of the past, present and future climates of Earth.


Hydrology

A growing number of bodies display relict or current hydrological modification. Earth, the "ocean planet," is the prime example. Other bodies display lesser modifications, indicating their similarities and differences. This may be defined to include fluids other than water, such as light hydrocarbons on Titan, or possibly supercritical carbon dioxide on Mars, which do not persist in Earth conditions. Ancient lava flows in turn may be considered a form of hydrological modification, which may be confounded with other fluids. Io currently has lava calderas and lakes. Fluid modification may have occurred on bodies as small as Vesta; hydration in general has been observed. If fluids include
groundwater Groundwater is the water present beneath Earth's surface in rock and soil pore spaces and in the fractures of rock formations. About 30 percent of all readily available freshwater in the world is groundwater. A unit of rock or an unconsolidated ...
and
vapor In physics, a vapor (American English) or vapour (British English and Canadian English; see spelling differences) is a substance in the gas phase at a temperature lower than its critical temperature,R. H. Petrucci, W. S. Harwood, and F. G. Her ...
, the list of bodies with hydrological modification includes Earth, Mars, and Enceladus, to a lesser extent comets and some asteroids, likely Europa and Triton, and possibly Ceres, Titan, and Pluto. Venus may have had hydrology in its early history, which would since have been erased. Fluid modification and mineral deposition on Mars, as observed by the MER and MSL rovers, is studied in light of Earth features and minerals. Minerals observed from orbiters and landers indicates formation in aqueous conditions; morphologies indicate fluid action and deposition. Extant Mars hydrology includes brief, seasonal flows on slopes; however, most Martian water is frozen into its polar caps and subsurface, as indicated by ground penetrating radars and pedestal craters. Antifreeze mixtures such as salts, peroxides, and perchlorates may allow fluid flow at Martian temperatures. Analogues of Mars landforms on Earth include Siberian and Hawaiian valleys, Greenland slopes, the Columbian Plateau, and various playas. Analogues for human expeditions (e.g. geology and hydrology fieldwork) include Devon Island, Canada, Antarctica, Utah, the Euro-Mars project, and Arkaroola, South Australia. The Moon, on the other hand, is a natural laboratory for regolith processes and weathering on anhydrous airless bodies- modification and alteration by meteoroid and micrometeoroid impacts, the implantation of solar and interstellar charged particles, radiation damage, spallation, exposure to ultraviolet radiation, and so on. Knowledge of the processes that create and modify the lunar regolith is essential to understanding the compositional and structural attributes of other airless planet and asteroid regoliths. Other possibilities include extrasolar planets completely covered by oceans, which would lack some Earthly processes.


Dynamics

Earth, alone among terrestrial planets, possesses a large moon. This is thought to confer stability to Earth's axial tilt, and thus seasons and climates. The closest analogue is the Pluto-Charon system, though its axial tilt is completely different. Both our Moon and Charon are hypothesized to have formed via giant impacts. Giant impacts are hypothesized to account for both the tilt of Uranus, and the retrograde rotation of Venus. Giant impacts are also candidates for the Mars ocean hypothesis, and the high density of Mercury. Most giant planets ( except Neptune) have retinues of moons, rings, ring shepherds, and moon Trojans analogous to mini-solar systems. These systems are postulated to have accreted from analogous gas clouds, and possibly with analogous migrations during their formation periods. The Cassini mission was defended on the grounds that Saturn system dynamics would contribute to studies of Solar System dynamics and formation. Studies of ring systems inform us of many-body dynamics. This is applicable to the asteroid and Kuiper Belts, and the early Solar System, which had more objects, dust, and gas. It is relevant to the magnetospherics of those bodies. It is also relevant to the dynamics of our galaxy and others. In turn, though the
Saturnian system The moons of Saturn are numerous and diverse, ranging from tiny moonlets only tens of meters across to enormous Titan, which is larger than the planet Mercury. Saturn has 83 moons with confirmed orbits that are not embedded in its rings—of ...
is readily studied (by Cassini, ground telescopes, and space telescopes), the simpler and lower mass ring systems of the other giants makes their explanations somewhat easier to fathom. The Jupiter ring system is perhaps more completely understood at present than any of the other three.
Asteroid families An asteroid is a minor planet of the Solar System#Inner solar system, inner Solar System. Sizes and shapes of asteroids vary significantly, ranging from 1-meter rocks to a dwarf planet almost 1000 km in diameter; they are rocky, metallic o ...
and
gaps Gaps is a member of the Montana group of Patience games, where the goal is to arrange all the cards in suit from Deuce (a Two card) to King. Other solitaire games in this family include Spaces, Addiction, Vacancies, Clown Solitaire, Paganini, ...
indicate their local dynamics. They are in turn indicative of the Kuiper Belt, and its hypothesized Kuiper cliff. The Hildas and Jupiter Trojans are then relevant to the Neptune Trojans and Plutinos, Twotinos, etc. Neptune's relative lack of a moon system suggests its formation and dynamics. The migration of Triton explains the ejection or destruction of competing moons, analogous to Hot Jupiters (also in sparse systems), and the Grand Tack hypothesis of Jupiter itself, on a smaller scale. The planets are considered to have formed by accretion of larger and larger particles, into asteroids and planetesimals, and into today's bodies. Vesta and Ceres are hypothesized to be the only surviving examples of planetesimals, and thus samples of the formative period of the Solar System. Transits of Mercury and Venus have been observed as analogues of extrasolar transits. As Mercury and Venus transits are far closer and thus appear "deeper," they can be studied in far finer detail. Similarly, analogues to our asteroid and Kuiper belts have been observed around other star systems, though in far less detail.


Astrobiology

Earth is the only body known to contain life; this results in geologic and atmospheric life signatures apart from the organisms themselves. Methane observed on Mars has been postulated but cannot be definitively ascribed as a biosignature. Multiple processes of non-biological methane generation are seen on Earth as well. The detection of biomarkers or biosignatures on other worlds is an active area of research. Although oxygen and/or ozone are generally considered strong signs of life, these too have alternate, non-biological explanations. The Galileo mission, while performing a gravity assist flyby of Earth, treated our planet as an extraterrestrial one, in a test of life detection techniques. Conversely, the Deep Impact mission's High Resolution Imager, intended for examining comets starting from great distances, could be repurposed for exoplanet observations in its EPOXI extended mission. Conversely, detection of life entails identification of those processes favoring or preventing life. This occurs primarily via study of Earth life and Earth processes, though this is in effect a sample size of one. Care must be taken to avoid observation and selection biases. Astrobiologists consider alternative chemistries for life, and study on Earth extremophile organisms that expand the potential definitions of habitable worlds.


See also

* Europlanet *
List of Mars analogs This is list of Mars analogs, which simulate aspects of the conditions human beings could experience during a future mission to Mars, or different aspects of Mars such as its materials or conditions. This is often used for testing aspects of space ...
* Lunar Crater National Natural Landmark * Terrestrial Analogue Sites


Bibliography

*Murray, B. ''Earthlike Planets'' (1981) W. H. Freeman and Company * * * * * *


References


External links

*NASA Astrobiology *Astrobiology Magazine- Comparative Planetology *Laboratory for Comparative Planetology, Vernadsky Institute{{cite web , title=Laboratory for Comparative Planetology, Vernadsky Institute , url=http://www.planetology.ru/ , accessdate=2 May 2015 Planetary science Space science