Commuting Diagram
   HOME

TheInfoList



OR:

350px, The commutative diagram used in the proof of the five lemma. In mathematics, and especially in category theory, a commutative diagram is a diagram such that all directed paths in the diagram with the same start and endpoints lead to the same result. It is said that commutative diagrams play the role in category theory that equations play in
algebra Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary ...
.


Description

A commutative diagram often consists of three parts: *
objects Object may refer to: General meanings * Object (philosophy), a thing, being, or concept ** Object (abstract), an object which does not exist at any particular time or place ** Physical object, an identifiable collection of matter * Goal, an ...
(also known as ''vertices'') * morphisms (also known as ''arrows'' or ''edges'') * paths or composites


Arrow symbols

In algebra texts, the type of morphism can be denoted with different arrow usages: * A
monomorphism In the context of abstract algebra or universal algebra, a monomorphism is an injective homomorphism. A monomorphism from to is often denoted with the notation X\hookrightarrow Y. In the more general setting of category theory, a monomorphism ...
may be labeled with a \hookrightarrow or a \rightarrowtail. * An
epimorphism In category theory, an epimorphism (also called an epic morphism or, colloquially, an epi) is a morphism ''f'' : ''X'' → ''Y'' that is right-cancellative in the sense that, for all objects ''Z'' and all morphisms , : g_1 \circ f = g_2 \circ f ...
may be labeled with a \twoheadrightarrow. * An
isomorphism In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word i ...
may be labeled with a \overset. * The dashed arrow typically represents the claim that the indicated morphism exists (whenever the rest of the diagram holds); the arrow may be optionally labeled as \exists. ** If the morphism is in addition unique, then the dashed arrow may be labeled ! or \exists!. The meanings of different arrows are not entirely standardized: the arrows used for monomorphisms, epimorphisms, and isomorphisms are also used for injections,
surjection In mathematics, a surjective function (also known as surjection, or onto function) is a function that every element can be mapped from element so that . In other words, every element of the function's codomain is the image of one element of ...
s, and bijections, as well as the cofibrations, fibrations, and weak equivalences in a
model category In mathematics, particularly in homotopy theory, a model category is a category with distinguished classes of morphisms ('arrows') called ' weak equivalences', ' fibrations' and 'cofibrations' satisfying certain axioms relating them. These abstr ...
.


Verifying commutativity

Commutativity makes sense for a
polygon In geometry, a polygon () is a plane figure that is described by a finite number of straight line segments connected to form a closed ''polygonal chain'' (or ''polygonal circuit''). The bounded plane region, the bounding circuit, or the two to ...
of any finite number of sides (including just 1 or 2), and a diagram is commutative if every polygonal subdiagram is commutative. Note that a diagram may be non-commutative, i.e., the composition of different paths in the diagram may not give the same result.


Phrases

Phrases like "this commutative diagram" or "the diagram commutes" may be used.


Examples


Example 1

In the left diagram, which expresses the
first isomorphism theorem In mathematics, specifically abstract algebra, the isomorphism theorems (also known as Noether's isomorphism theorems) are theorems that describe the relationship between quotients, homomorphisms, and subobjects. Versions of the theorems exist fo ...
, commutativity of the triangle means that f = \tilde \circ \pi. In the right diagram, commutativity of the square means h \circ f = k \circ g.


Example 2

In order for the diagram below to commute, three equalities must be satisfied: # r \circ h \circ g = H \circ G \circ l # m \circ g = G \circ l # r \circ h = H \circ m Here, since the first equality follows from the last two, it suffices to show that (2) and (3) are true in order for the diagram to commute. However, since equality (3) generally does not follow from the other two, it is generally not enough to have only equalities (1) and (2) if one were to show that the diagram commutes.


Diagram chasing

Diagram chasing (also called diagrammatic search) is a method of
mathematical proof A mathematical proof is an inferential argument for a mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proo ...
used especially in homological algebra, where one establishes a property of some morphism by tracing the elements of a commutative diagram. A proof by diagram chasing typically involves the formal use of the properties of the diagram, such as injective or surjective maps, or
exact sequence An exact sequence is a sequence of morphisms between objects (for example, groups, rings, modules, and, more generally, objects of an abelian category) such that the image of one morphism equals the kernel of the next. Definition In the context ...
s. A syllogism is constructed, for which the graphical display of the diagram is just a visual aid. It follows that one ends up "chasing" elements around the diagram, until the desired element or result is constructed or verified. Examples of proofs by diagram chasing include those typically given for the
five lemma In mathematics, especially homological algebra and other applications of abelian category theory, the five lemma is an important and widely used lemma about commutative diagrams. The five lemma is not only valid for abelian categories but also work ...
, the
snake lemma The snake lemma is a tool used in mathematics, particularly homological algebra, to construct long exact sequences. The snake lemma is valid in every abelian category and is a crucial tool in homological algebra and its applications, for instance ...
, the
zig-zag lemma In mathematics, particularly homological algebra, the zig-zag lemma asserts the existence of a particular long exact sequence in the homology groups of certain chain complexes. The result is valid in every abelian category. Statement In an abel ...
, and the
nine lemma right In mathematics, the nine lemma (or 3×3 lemma) is a statement about commutative diagrams and exact sequences valid in the category of groups and any abelian category. It states: if the diagram to the right is a commutative diagram and all co ...
.


In higher category theory

In higher category theory, one considers not only objects and arrows, but arrows between the arrows, arrows between arrows between arrows, and so on
ad infinitum ''Ad infinitum'' is a Latin phrase meaning "to infinity" or "forevermore". Description In context, it usually means "continue forever, without limit" and this can be used to describe a non-terminating process, a non-terminating ''repeating'' pr ...
. For example, the category of small categories Cat is naturally a 2-category, with functors as its arrows and
natural transformations In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natural ...
as the arrows between functors. In this setting, commutative diagrams may include these higher arrows as well, which are often depicted in the following style: \Rightarrow. For example, the following (somewhat trivial) diagram depicts two categories and , together with two functors , : → and a natural transformation : ⇒ : : There are two kinds of composition in a 2-category (called vertical composition and horizontal composition), and they may also be depicted via pasting diagrams (see 2-category#Definition for examples).


Diagrams as functors

A commutative diagram in a category ''C'' can be interpreted as a
functor In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and m ...
from an index category ''J'' to ''C;'' one calls the functor a diagram. More formally, a commutative diagram is a visualization of a diagram indexed by a poset category. Such a diagram typically includes: * a node for every object in the index category, * an arrow for a generating set of morphisms (omitting identity maps and morphisms that can be expressed as compositions), * the commutativity of the diagram (the equality of different compositions of maps between two objects), corresponding to the uniqueness of a map between two objects in a poset category. Conversely, given a commutative diagram, it defines a poset category, where: * the objects are the nodes, * there is a morphism between any two objects if and only if there is a (directed) path between the nodes, * with the relation that this morphism is unique (any composition of maps is defined by its domain and target: this is the commutativity axiom). However, not every diagram commutes (the notion of diagram strictly generalizes commutative diagram). As a simple example, the diagram of a single object with an endomorphism (f\colon X \to X), or with two parallel arrows (\bullet \rightrightarrows \bullet, that is, f,g\colon X \to Y, sometimes called the
free quiver In graph theory, a quiver is a directed graph where loops and multiple arrows between two vertices are allowed, i.e. a multidigraph. They are commonly used in representation theory: a representation  of a quiver assigns a vector space  ...
), as used in the definition of equalizer need not commute. Further, diagrams may be messy or impossible to draw, when the number of objects or morphisms is large (or even infinite).


See also

* Mathematical diagram


References


Bibliography

* Now available as free on-line edition (4.2MB PDF). * Revised and corrected free online version of ''Grundlehren der mathematischen Wissenschaften (278)'' Springer-Verlag, 1983).


External links


Diagram Chasing
at
MathWorld ''MathWorld'' is an online mathematics reference work, created and largely written by Eric W. Weisstein. It is sponsored by and licensed to Wolfram Research, Inc. and was partially funded by the National Science Foundation's National Science Di ...

WildCats
is a category theory package for Mathematica. Manipulation and visualization of objects, morphisms, categories,
functor In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and m ...
s,
natural transformation In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natur ...
s. {{Category theory Homological algebra Category theory Mathematical proofs Mathematical terminology Diagrams