HOME

TheInfoList



OR:

In
astronomy Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry in order to explain their origin and their overall evolution. Objects of interest includ ...
, a common envelope (CE) is gas that contains a
binary star A binary star or binary star system is a system of two stars that are gravitationally bound to and in orbit around each other. Binary stars in the night sky that are seen as a single object to the naked eye are often resolved as separate stars us ...
system. The gas does not rotate at the same rate as the embedded binary system. A system with such a configuration is said to be in a common envelope phase or undergoing common envelope evolution. During a common envelope phase the embedded binary system is subject to drag forces from the envelope which cause the separation of the two stars to decrease. The phase ends either when the envelope is ejected to leave the binary system with much smaller orbital separation, or when the two stars become sufficiently close to merge and form a single star. A common envelope phase is short-lived relative to the lifetime of the stars involved. Evolution through a common envelope phase with ejection of the envelope can lead to the formation of a binary system composed of a
compact object In astronomy, the term compact object (or compact star) refers collectively to white dwarfs, neutron stars, and black holes. It could also include exotic stars if such hypothetical, dense bodies are confirmed to exist. All compact objects have a ...
with a close companion. Cataclysmic variables, X-ray binaries and systems of close double white dwarfs or neutron stars are examples of systems of this type which can be explained as having undergone common envelope evolution. In all these examples there is a compact remnant (a white dwarf, neutron star or black hole) which must have been the core of a star which was much larger than the current orbital separation. If these systems have undergone common envelope evolution then their present close separation is explained. Short-period systems containing compact objects are sources of
gravitational waves Gravitational waves are oscillations of the gravitational field that travel through space at the speed of light; they are generated by the relative motion of gravitating masses. They were proposed by Oliver Heaviside in 1893 and then later by H ...
and Type Ia supernovae. Predictions of the outcome of common envelope evolution are uncertain. A common envelope is sometimes confused with a contact binary. In a common envelope binary system the envelope does not generally rotate at the same rate as the embedded binary system; thus it is not constrained by the equipotential surface passing through the L2
Lagrangian point In celestial mechanics, the Lagrange points (; also Lagrangian points or libration points) are points of equilibrium (mechanics), equilibrium for small-mass objects under the gravity, gravitational influence of two massive orbit, orbiting b ...
. In a contact binary system the shared envelope rotates with the binary system and fills an equipotential surface.


Formation

A common envelope is formed in a binary star system when the orbital separation decreases rapidly or one of the stars expands rapidly. The donor star will start mass transfer when it overfills its
Roche lobe In astronomy, the Roche lobe is the region around a star in a binary system within which orbiting material is gravitationally bound to that star. It is an approximately teardrop-shaped region bounded by a critical gravitational equipotential, ...
and as a consequence the orbit will shrink further causing it to overflow the Roche lobe even more, which accelerates the mass transfer, causing the orbit to shrink even faster and the donor to expand more. This leads to the run-away process of dynamically unstable mass transfer. In some cases the receiving star is unable to accept all the material, which leads to the formation of a common envelope engulfing the companion star.


Evolution

The donor's core does not participate in the expansion of the stellar envelope and the formation of the common envelope, and the common envelope will contain two objects: the core of the original donor and the companion star. These two objects (initially) continue their orbital motion inside the common envelope. However, it is thought that because of drag forces inside the gaseous envelope, the two objects lose energy, which brings them in a closer orbit and actually increases their orbital velocities. The loss of orbital energy is assumed to heat up and expand the envelope, and the whole common-envelope phase ends when either the envelope is expelled into space, or the two objects inside the envelope merge and no more energy is available to expand or even expel the envelope. This phase of the shrinking of the orbit inside the common envelope is known as a spiral-in.


Observational manifestations

Common envelope events (CEEs) are difficult to observe. Their existence has been mainly inferred indirectly from presence in the galaxy of binary systems that can not be explained by any other mechanism. Observationally CEEs should be brighter than typical novae but fainter than typical
supernovae A supernova (: supernovae or supernovas) is a powerful and luminous explosion of a star. A supernova occurs during the last evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion. The original ob ...
. The photosphere of the common envelope should be relatively cool—at about 5,000 K—emitting a red spectrum. However its large size should lead to a large luminosity—on the order of that of a red supergiant. A common envelope event should begin with a sharp rise in luminosity followed by a few months long plateau of constant luminosity (much like that of type II-P supernova) powered by the recombination of hydrogen in the envelope. After that the luminosity should decrease rapidly. Several events that resemble the description above have been observed in past. These events are called luminous red novae (LRNe). They are a subset of a broader class of events called intermediate-luminosity red transients (ILRTs). They have relatively slow expansion velocities of 200–1000 km/s and total radiated energies are 1038 to 1040 J. The possible CEEs that have been observed so far include: * M85 OT2006-1, possible ejection of the whole envelope. * V1309 Scorpii, a possible star merger. * M31 RV * V838 Monocerotis * Ou 5, a planetary nebula whose progenitor was a common envelope binary


See also

*
Binary star A binary star or binary star system is a system of two stars that are gravitationally bound to and in orbit around each other. Binary stars in the night sky that are seen as a single object to the naked eye are often resolved as separate stars us ...
* Binary system (astronomy) * Contact binary * Post common envelope binary


References

- Stellar astronomy {{Star