Collision Domain
   HOME

TheInfoList



OR:

In physics, a collision is any event in which two or more bodies exert
force In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a p ...
s on each other in a relatively short time. Although the most common use of the word ''collision'' refers to incidents in which two or more objects collide with great force, the scientific use of the term implies nothing about the magnitude of the force. Some examples of physical interactions that scientists would consider collisions are the following: * When an insect lands on a plant's leaf, its legs are said to collide with the leaf. * When a cat strides across a lawn, each contact that its paws make with the ground is considered a collision, as well as each brush of its fur against a blade of grass. * When a boxer throws a punch, their fist is said to collide with the opponents body. * When an
astronomical object An astronomical object, celestial object, stellar object or heavenly body is a naturally occurring physical entity, association, or structure that exists in the observable universe. In astronomy, the terms ''object'' and ''body'' are often us ...
merges with a
black hole A black hole is a region of spacetime where gravitation, gravity is so strong that nothing, including light or other Electromagnetic radiation, electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts t ...
, they are considered to collide. Some colloquial uses of the word collision are the following: * A traffic collision involves at least one automobile. * A mid-air collision occurs between airplanes. * A ship collision accurately involves at least two moving maritime vessels hitting each other; the related term, '' allision'', describes when a moving ship strikes a stationary object (often, but not always, another ship). In physics, collisions can be classified by the change in the total kinetic energy of the system before and after the collision: * If most or all of the total kinetic energy is lost ( dissipated as heat, sound, etc. or absorbed by the objects themselves), the collision is said to be ''inelastic''; such collisions involve objects coming to a full stop. An example of such a collision is a car crash, as cars crumple inward when crashing, rather than bouncing off of each other. This is by design, for the safety of the occupants and bystanders should a crash occur - the frame of the car absorbs the energy of the crash instead. * If most of the kinetic energy is conserved (i.e. the objects continue moving afterwards), the collision is said to be ''elastic''. An example of this is a baseball bat hitting a baseball - the kinetic energy of the bat is transferred to the ball, greatly increasing the ball's velocity. The sound of the bat hitting the ball represents the loss of energy. * And if all of the total kinetic energy is conserved (i.e. no energy is released as sound, heat, etc.), the collision is said to be ''perfectly elastic''. Such a system is an idealization and cannot occur in reality, due to the second law of thermodynamics.


Physics

Collision is short-duration interaction between two bodies or more than two bodies simultaneously causing change in motion of bodies involved due to internal forces acted between them during this. Collisions involve forces (there is a change in velocity). The magnitude of the velocity difference just before impact is called the closing speed. All collisions conserve
momentum In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass an ...
. What distinguishes different types of collisions is whether they also conserve kinetic energy. The line of impact is the line that is collinear to the common normal of the surfaces that are closest or in contact during impact. This is the line along which internal force of collision acts during impact, and Newton's
coefficient of restitution The coefficient of restitution (COR, also denoted by ''e''), is the ratio of the final to initial relative speed between two objects after they collide. It normally ranges from 0 to 1 where 1 would be a perfectly elastic collision. A perfectl ...
is defined only along this line. Collisions are of three types: #perfectly elastic collision #inelastic collision #perfectly inelastic collision. Specifically, collisions can either be '' elastic,'' meaning they conserve both momentum and kinetic energy, or '' inelastic,'' meaning they conserve momentum but not kinetic energy. An inelastic collision is sometimes also called a ''plastic collision.'' A "perfectly inelastic" collision (also called a "perfectly plastic" collision) is a limiting case of inelastic collision in which the two bodies coalesce after impact. The degree to which a collision is elastic or inelastic is quantified by the
coefficient of restitution The coefficient of restitution (COR, also denoted by ''e''), is the ratio of the final to initial relative speed between two objects after they collide. It normally ranges from 0 to 1 where 1 would be a perfectly elastic collision. A perfectl ...
, a value that generally ranges between zero and one. A perfectly elastic collision has a coefficient of restitution of one; a perfectly inelastic collision has a coefficient of restitution of zero.


Types of collisions

There are two types of collisions between two bodies - 1) Head-on collisions or one-dimensional collisions - where the velocity of each body just before impact is along the line of impact, and 2) Non-head-on collisions, oblique collisions or two-dimensional collisions - where the velocity of each body just before impact is not along the line of impact. According to the coefficient of restitution, there are two special cases of any collision as written below: # A perfectly elastic collision is defined as one in which there is no loss of kinetic energy in the collision. In reality, any macroscopic collision between objects will convert some kinetic energy to
internal energy The internal energy of a thermodynamic system is the total energy contained within it. It is the energy necessary to create or prepare the system in its given internal state, and includes the contributions of potential energy and internal kinet ...
and other forms of energy, so no large-scale impacts are perfectly elastic. However, some problems are sufficiently close to perfectly elastic that they can be approximated as such. In this case, the coefficient of restitution equals one. # An
inelastic collision An inelastic collision, in contrast to an elastic collision, is a collision in which kinetic energy is not conserved due to the action of internal friction. In collisions of macroscopic bodies, some kinetic energy is turned into vibrational energ ...
is one in which part of the kinetic energy is changed to some other form of energy in the collision.
Momentum In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass an ...
is conserved in inelastic collisions (as it is for elastic collisions), but one cannot track the kinetic energy through the collision since some of it is converted to other forms of energy. In this case, coefficient of restitution is not equal to one. In any type of collision there is a phase when for a moment colliding bodies have the same velocity along the line of impact. Then the kinetic energy of bodies reduces to its minimum during this phase and may be called a maximum deformation phase for which momentarily the coefficient of restitution becomes one. Collisions in ideal gases approach perfectly elastic collisions, as do scattering interactions of sub-atomic particles which are deflected by the electromagnetic force. Some large-scale interactions like the slingshot type gravitational interactions between satellites and planets are almost perfectly elastic. Collisions between hard spheres may be nearly elastic, so it is useful to calculate the limiting case of an elastic collision. The assumption of conservation of momentum as well as the conservation of kinetic energy makes possible the calculation of the final velocities in two-body collisions.


Allision

In
maritime law Admiralty law or maritime law is a body of law that governs nautical issues and private maritime disputes. Admiralty law consists of both domestic law on maritime activities, and private international law governing the relationships between priva ...
, it is occasionally desirable to distinguish between the situation of a vessel striking a moving object, and that of it striking a stationary object. The word "allision" is then used to mean the striking of a stationary object, while "collision" is used to mean the striking of a moving object. Thus, when two vessels run against each other, courts typically use the term collision whereas when one vessel runs against another, they typically use the term allision. The fixed object could also be a bridge or
dock A dock (from Dutch language, Dutch ''dok'') is the area of water between or next to one or a group of human-made structures that are involved in the handling of boats or ships (usually on or near a shore) or such structures themselves. The ex ...
. While there is no great difference between the two terms and often they are even used interchangeably, determining the difference helps clarify the circumstances of emergencies and adapt accordingly. In the case of ''Vane Line Bunkering, Inc. v. Natalie D M/V,'' it was established that there was the presumption that the moving vessel is at fault, stating that "presumption derives from the common-sense observation that moving vessels do not usually collide with stationary objects unless the ovingvessel is mishandled in some way". This is also referred to as ''The Oregon Rule.''


Analytical vs. numerical approaches towards resolving collisions

Relatively few problems involving collisions can be solved analytically; the remainder require numerical methods. An important problem in simulating collisions is determining whether two objects have in fact collided. This problem is called collision detection.


Examples of collisions that can be solved analytically


Billiards

Collisions play an important role in cue sports. Because the collisions between billiard balls are nearly elastic, and the balls roll on a surface that produces low
rolling friction Rolling resistance, sometimes called rolling friction or rolling drag, is the force resisting the motion when a body (such as a ball, tire, or wheel) rolls on a surface. It is mainly caused by non-elastic effects; that is, not all the energy nee ...
, their behavior is often used to illustrate Newton's laws of motion. After a zero-friction collision of a moving ball with a stationary one of equal mass, the angle between the directions of the two balls is 90 degrees. This is an important fact that professional billiards players take into account, although it assumes the ball is moving without any impact of friction across the table rather than rolling with friction. Consider an elastic collision in two dimensions of any two masses ''m''1 and ''m''2, with respective initial velocities u1 and u2 where u2 = 0, and final velocities V1 and V2. Conservation of momentum gives ''m''1u1 = ''m''1V1 + ''m''2V2. Conservation of energy for an elastic collision gives (1/2)''m''1, u1, 2 = (1/2)''m''1, V1, 2 + (1/2)''m''2, V2, 2. Now consider the case ''m''1 = ''m''2: we obtain u1 = V1 + V2 and , u1, 2 = , V1, 2 + , V2, 2. Taking the dot product of each side of the former equation with itself, , u1, 2 = u1•u1 = , V1, 2 + , V2, 2 + 2V1•V2. Comparing this with the latter equation gives V1•V2 = 0, so they are perpendicular unless V1 is the zero vector (which occurs if and only if the collision is head-on).


Perfect inelastic collision

In a perfect
inelastic collision An inelastic collision, in contrast to an elastic collision, is a collision in which kinetic energy is not conserved due to the action of internal friction. In collisions of macroscopic bodies, some kinetic energy is turned into vibrational energ ...
, i.e., a zero
coefficient of restitution The coefficient of restitution (COR, also denoted by ''e''), is the ratio of the final to initial relative speed between two objects after they collide. It normally ranges from 0 to 1 where 1 would be a perfectly elastic collision. A perfectl ...
, the colliding particles coalesce. It is necessary to consider conservation of momentum: ::m_a \mathbf u_a + m_b \mathbf u_b = \left( m_a + m_b \right) \mathbf v \, where v is the final velocity, which is hence given by ::\mathbf v = \frac The reduction of total kinetic energy is equal to the total kinetic energy before the collision in a
center of momentum frame In physics, the center-of-momentum frame (also zero-momentum frame or COM frame) of a system is the unique (up to velocity but not origin) inertial frame in which the total momentum of the system vanishes. The ''center of momentum'' of a system i ...
with respect to the system of two particles, because in such a frame the kinetic energy after the collision is zero. In this frame most of the kinetic energy before the collision is that of the particle with the smaller mass. In another frame, in addition to the reduction of kinetic energy there may be a transfer of kinetic energy from one particle to the other; the fact that this depends on the frame shows how relative this is. With time reversed we have the situation of two objects pushed away from each other, e.g. shooting a
projectile A projectile is an object that is propelled by the application of an external force and then moves freely under the influence of gravity and air resistance. Although any objects in motion through space are projectiles, they are commonly found in ...
, or a rocket applying thrust (compare the derivation of the Tsiolkovsky rocket equation).


Examples of collisions analyzed numerically


Animal locomotion

Collisions of an animal's foot or paw with the underlying substrate are generally termed ground reaction forces. These collisions are inelastic, as kinetic energy is not conserved. An important research topic in prosthetics is quantifying the forces generated during the foot-ground collisions associated with both disabled and non-disabled gait. This quantification typically requires subjects to walk across a force platform (sometimes called a "force plate") as well as detailed kinematic and dynamic (sometimes termed kinetic) analysis.


Collisions used as an experimental tool

Collisions can be used as an experimental technique to study material properties of objects and other physical phenomena.


Space exploration

An object may deliberately be made to crash-land on another celestial body, to do measurements and send them to Earth before being destroyed, or to allow instruments elsewhere to observe the effect. See e.g.: *During
Apollo 13 Apollo 13 (April 1117, 1970) was the seventh crewed mission in the Apollo space program and the third meant to land on the Moon. The craft was launched from Kennedy Space Center on April 11, 1970, but the lunar landing was aborted aft ...
,
Apollo 14 Apollo 14 (January 31, 1971February 9, 1971) was the eighth crewed mission in the United States Apollo program, the third to land on the Moon, and the first to land in the lunar highlands. It was the last of the " H missions", landings at s ...
,
Apollo 15 Apollo 15 (July 26August 7, 1971) was the ninth crewed mission in the United States' Apollo program and the fourth to Moon landing, land on the Moon. It was the first List of Apollo missions#Alphabetical mission types, J mission, with a ...
,
Apollo 16 Apollo 16 (April 1627, 1972) was the tenth crewed mission in the United States Apollo space program, administered by NASA, and the fifth and penultimate to land on the Moon. It was the second of Apollo's " J missions", with an extended sta ...
and
Apollo 17 Apollo 17 (December 7–19, 1972) was the final mission of NASA's Apollo program, the most recent time humans have set foot on the Moon or traveled beyond low Earth orbit. Commander Gene Cernan and Lunar Module Pilot Harrison Schmitt walked on ...
, the S-IVB (the rocket's third stage) was crashed into the Moon in order to perform seismic measurement used for characterizing the lunar core. * ''Deep Impact'' * SMART-1 -
European Space Agency , owners = , headquarters = Paris, Île-de-France, France , coordinates = , spaceport = Guiana Space Centre , seal = File:ESA emblem seal.png , seal_size = 130px , image = Views in the Main Control Room (1205 ...
satellite * Moon impact probe -
ISRO The Indian Space Research Organisation (ISRO; ) is the national space agency of India, headquartered in Bengaluru. It operates under the Department of Space (DOS) which is directly overseen by the Prime Minister of India, while the Chairman ...
probe and
LCROSS The Lunar Crater Observation and Sensing Satellite (LCROSS) was a robotic spacecraft operated by NASA. The mission was conceived as a low-cost means of determining the nature of hydrogen detected at the polar regions of the Moon. Launched immedi ...
with its spent Centaur Upper Stage - NASA Probe * Double Asteroid Redirection Test for
planetary defence Asteroid impact avoidance comprises the methods by which near-Earth objects (NEO) on a potential collision course with Earth could be diverted away, preventing destructive impact events. An impact by a sufficiently large asteroid or other NEOs ...


Mathematical description of molecular collisions

Let the linear, angular and internal momenta of a molecule be given by the set of ''r'' variables . The state of a molecule may then be described by the range ''δw''''i'' = δ''p''1δ''p''2δ''p''3 ... δ''p''''r''. There are many such ranges corresponding to different states; a specific state may be denoted by the index ''i''. Two molecules undergoing a collision can thus be denoted by (''i'', ''j'') (Such an ordered pair is sometimes known as a ''constellation''.) It is convenient to suppose that two molecules exert a negligible effect on each other unless their center of gravity approach within a critical distance ''b''. A collision therefore begins when the respective centers of gravity arrive at this critical distance, and is completed when they again reach this critical distance on their way apart. Under this model, a collision is completely described by the matrix \begini&j\\k&l\end , which refers to the constellation (''i'', ''j'') before the collision, and the (in general different) constellation (''k'', ''l'') after the collision. This notation is convenient in proving Boltzmann's H-theorem of
statistical mechanics In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic be ...
.


Attack by means of a deliberate collision

Types of attack by means of a deliberate collision include: * striking with the body: unarmed
striking Strike may refer to: People *Strike (surname) Physical confrontation or removal *Strike (attack), attack with an inanimate object or a part of the human body intended to cause harm *Airstrike, military strike by air forces on either a suspected ...
, punching, kicking * striking with a weapon, such as a
sword A sword is an edged, bladed weapon intended for manual cutting or thrusting. Its blade, longer than a knife or dagger, is attached to a hilt and can be straight or curved. A thrusting sword tends to have a straighter blade with a pointed ti ...
, club or axe * ramming with an object or vehicle, e.g.: ** Ram-raiding, the practice of driving a car into a building in order to break in ** a battering ram, medieval weapon used for breaking down large doors, also a modern version is used by police forces during raids An attacking collision with a distant object can be achieved by throwing or launching a
projectile A projectile is an object that is propelled by the application of an external force and then moves freely under the influence of gravity and air resistance. Although any objects in motion through space are projectiles, they are commonly found in ...
.


See also

* Ballistic pendulum * Car accident *
Coefficient of restitution The coefficient of restitution (COR, also denoted by ''e''), is the ratio of the final to initial relative speed between two objects after they collide. It normally ranges from 0 to 1 where 1 would be a perfectly elastic collision. A perfectl ...
* Collision (telecommunications) * Collision detection * Contact mechanics * Elastic collision * Friction * Head-on collision * Impact crater *
Impact event An impact event is a collision between astronomical objects causing measurable effects. Impact events have physical consequences and have been found to regularly occur in planetary systems, though the most frequent involve asteroids, comets or me ...
*
Inelastic collision An inelastic collision, in contrast to an elastic collision, is a collision in which kinetic energy is not conserved due to the action of internal friction. In collisions of macroscopic bodies, some kinetic energy is turned into vibrational energ ...
*
Kinetic theory of gases Kinetic (Ancient Greek: κίνησις “kinesis”, movement or to move) may refer to: * Kinetic theory, describing a gas as particles in random motion * Kinetic energy, the energy of an object that it possesses due to its motion Art and enter ...
- collisions between molecules * Mid-air collision *
Projectile A projectile is an object that is propelled by the application of an external force and then moves freely under the influence of gravity and air resistance. Although any objects in motion through space are projectiles, they are commonly found in ...
* Satellite collision *
Space debris Space debris (also known as space junk, space pollution, space waste, space trash, or space garbage) are defunct human-made objects in space—principally in Earth orbit—which no longer serve a useful function. These include derelict spacecr ...
* Train wreck


Notes


References

* Reissued (1979) New York: Dover {{ISBN, 0-486-63896-0.


External links


Three Dimensional Collision
- Oblique inelastic collision between two homogeneous spheres.
One Dimensional Collision
- One Dimensional Collision Flash Applet.
Two Dimensional Collision
- Two Dimensional Collision Flash Applet. Mechanics hu:Ütközés