HOME

TheInfoList



OR:

In physics, coherent backscattering is observed when
coherent Coherence is, in general, a state or situation in which all the parts or ideas fit together well so that they form a united whole. More specifically, coherence, coherency, or coherent may refer to the following: Physics * Coherence (physics ...
radiation (such as a
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word ''laser'' originated as an acronym for light amplification by stimulated emission of radi ...
beam) propagates through a medium which has a large number of
scattering In physics, scattering is a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including particles and radiat ...
centers (such as milk or a thick cloud) of size comparable to the wavelength of the radiation. The waves are scattered many times while traveling through the medium. Even for incoherent radiation, the scattering typically reaches a
local maximum In mathematical analysis, the maximum and minimum of a function (mathematics), function are, respectively, the greatest and least value taken by the function. Known generically as extremum, they may be defined either within a given Interval (ma ...
in the direction of backscattering. For coherent radiation, however, the peak is two times higher. Coherent backscattering is very difficult to detect and measure for two reasons. The first is fairly obvious, that it is difficult to measure the direct backscatter without blocking the beam, but there are methods for overcoming this problem. The second is that the peak is usually extremely sharp around the backward direction, so that a very high level of
angular resolution Angular resolution describes the ability of any image-forming device such as an Optical telescope, optical or radio telescope, a microscope, a camera, or an Human eye, eye, to distinguish small details of an object, thereby making it a major det ...
is needed for the detector to see the peak without averaging its intensity out over the surrounding angles where the intensity can undergo large dips. At angles other than the backscatter direction, the light intensity is subject to numerous essentially random fluctuations called speckles. This is one of the most robust
interference Interference is the act of interfering, invading, or poaching. Interference may also refer to: Communications * Interference (communication), anything which alters, modifies, or disrupts a message * Adjacent-channel interference, caused by extra ...
phenomena that survives multiple scattering, and it is regarded as an aspect of a
quantum mechanical Quantum mechanics is the fundamental physical theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Addison-Wesley, 1989, It is the foundation of a ...
phenomenon known as
weak localization Weak localization is a physical effect which occurs in disordered electronic systems at very low temperatures. The effect manifests itself as a ''positive'' correction to the resistivity of a metal or semiconductor. The name emphasizes the fact tha ...
(Akkermans et al. 1986). In weak localization, interference of the direct and reverse paths leads to a net reduction of light transport in the forward direction. This phenomenon is typical of any coherent wave which is multiple scattered. It is typically discussed for light waves, for which it is similar to the weak localization phenomenon for electrons in disordered semi-conductors and often seen as the precursor to Anderson (or strong) localization of light. Weak localization of light can be detected since it is manifested as an enhancement of light intensity in the backscattering direction. This substantial enhancement is called the cone of coherent backscattering. Coherent backscattering has its origin in the interference between direct and reverse paths in the backscattering direction. When a multiply scattering medium is illuminated by a laser beam, the scattered intensity results from the interference between the amplitudes associated with the various scattering paths; for a disordered medium, the interference terms are washed out when averaged over many sample configurations, except in a narrow angular range around exact backscattering where the average intensity is enhanced. This phenomenon is the result of many sinusoidal two-wave interference patterns which add up. The cone is the
Fourier transform In mathematics, the Fourier transform (FT) is an integral transform that takes a function as input then outputs another function that describes the extent to which various frequencies are present in the original function. The output of the tr ...
of the spatial distribution of the intensity of the scattered light on the sample surface, when the latter is illuminated by a point-like source. The enhanced backscattering relies on the constructive interference between reverse paths. One can make an analogy with a Young's interference experiment, where two diffracting slits would be positioned in place of the "input" and "output" scatterers.


See also

* Back scattering alignment (BSA), a coordinate system most commonly used in radar * Forward scattering alignment (FSA), a coordinate system primarily used in optics * Opposition surge, an astronomical phenomenon caused by the coherent backscatter effect


References

*{{cite journal , last= Akkermans , first= E., author2=P. E. Wolf , author3=R. Maynard , year= 1986 , title= Coherent Backscattering of Light by Disordered Media: Analysis of the Peak Line Shape, journal=
Physical Review Letters ''Physical Review Letters'' (''PRL''), established in 1958, is a peer-reviewed, scientific journal that is published 52 times per year by the American Physical Society. The journal is considered one of the most prestigious in the field of physics ...
, volume= 56 , issue= 14, pages= 1471–1474 , doi= 10.1103/PhysRevLett.56.1471 , pmid=10032680 , bibcode=1986PhRvL..56.1471A * Scattering, absorption and radiative transfer (optics) Mesoscopic physics