Codon Usage
   HOME

TheInfoList



OR:

Codon usage bias refers to differences in the frequency of occurrence of
synonymous A synonym is a word, morpheme, or phrase that means exactly or nearly the same as another word, morpheme, or phrase in a given language. For example, in the English language, the words ''begin'', ''start'', ''commence'', and ''initiate'' are all ...
codon The genetic code is the set of rules used by living cells to translate information encoded within genetic material ( DNA or RNA sequences of nucleotide triplets, or codons) into proteins. Translation is accomplished by the ribosome, which links ...
s in coding DNA. A codon is a series of three nucleotides (a triplet) that encodes a specific amino acid residue in a
polypeptide Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. A p ...
chain or for the termination of translation ( stop codons). There are 64 different codons (61 codons encoding for amino acids and 3 stop codons) but only 20 different translated amino acids. The overabundance in the number of codons allows many amino acids to be encoded by more than one codon. Because of such redundancy it is said that the genetic code is degenerate. The genetic codes of different organisms are often biased towards using one of the several codons that encode the same amino acid over the others—that is, a greater frequency of one will be found than expected by chance. How such biases arise is a much debated area of molecular evolution. Codon usage tables detailing genomic codon usage bias for organisms in GenBank and RefSeq can be found in th
HIVE-Codon Usage Tables (HIVE-CUTs) project
which contains two distinct databases, CoCoPUTs and TissueCoCoPUTs. Together, these two databases provide comprehensive, up-to-date codon, codon pair and dinucleotide usage statistics for all organisms with available sequence information and 52 human tissues, respectively. It is generally acknowledged that codon biases reflect a balance between mutational biases and natural selection ( mutation–selection balance) for translational optimization. Optimal codons in fast-growing microorganisms, like '' Escherichia coli'' or '' Saccharomyces cerevisiae'' (baker's yeast), reflect the composition of their respective genomic
transfer RNA Transfer RNA (abbreviated tRNA and formerly referred to as sRNA, for soluble RNA) is an adaptor molecule composed of RNA, typically 76 to 90 nucleotides in length (in eukaryotes), that serves as the physical link between the mRNA and the amino ac ...
(tRNA) pool. It is thought that optimal codons help to achieve faster translation rates and high accuracy. As a result of these factors, translational selection is expected to be stronger in highly expressed genes, as is indeed the case for the above-mentioned organisms. In other organisms that do not show high growing rates or that present small genomes, codon usage optimization is normally absent, and codon preferences are determined by the characteristic mutational biases seen in that particular genome. Examples of this are '' Homo sapiens'' (human) and '' Helicobacter pylori.'' Organisms that show an intermediate level of codon usage optimization include '' Drosophila melanogaster'' (fruit fly), ''
Caenorhabditis elegans ''Caenorhabditis elegans'' () is a free-living transparent nematode about 1 mm in length that lives in temperate soil environments. It is the type species of its genus. The name is a blend of the Greek ''caeno-'' (recent), ''rhabditis'' (ro ...
'' (nematode worm), '' Strongylocentrotus purpuratus'' (
sea urchin Sea urchins () are spiny, globular echinoderms in the class Echinoidea. About 950 species of sea urchin live on the seabed of every ocean and inhabit every depth zone from the intertidal seashore down to . The spherical, hard shells (tests) of ...
), and ''
Arabidopsis thaliana ''Arabidopsis thaliana'', the thale cress, mouse-ear cress or arabidopsis, is a small flowering plant native to Eurasia and Africa. ''A. thaliana'' is considered a weed; it is found along the shoulders of roads and in disturbed land. A winter a ...
'' ( thale cress). Several viral families ( herpesvirus,
lentivirus ''Lentivirus'' is a genus of retroviruses that cause chronic and deadly diseases characterized by long incubation periods, in humans and other mammalian species. The genus includes the human immunodeficiency virus (HIV), which causes AIDS. Lent ...
, papillomavirus, polyomavirus,
adenovirus Adenoviruses (members of the family ''Adenoviridae'') are medium-sized (90–100 nm), nonenveloped (without an outer lipid bilayer) viruses with an icosahedral nucleocapsid containing a double-stranded DNA genome. Their name derives from the ...
, and parvovirus) are known to encode structural proteins that display heavily skewed codon usage compared to the host cell. The suggestion has been made that these codon biases play a role in the temporal regulation of their late proteins. The nature of the codon usage-tRNA optimization has been fiercely debated. It is not clear whether codon usage drives tRNA evolution or vice versa. At least one mathematical model has been developed where both codon usage and tRNA expression co-evolve in
feedback Feedback occurs when outputs of a system are routed back as inputs as part of a chain of cause-and-effect that forms a circuit or loop. The system can then be said to ''feed back'' into itself. The notion of cause-and-effect has to be handled ...
fashion (''i.e.'', codons already present in high frequencies drive up the expression of their corresponding tRNAs, and tRNAs normally expressed at high levels drive up the frequency of their corresponding codons). However, this model does not seem to yet have experimental confirmation. Another problem is that the evolution of tRNA genes has been a very inactive area of research.


Contributing factors

Different factors have been proposed to be related to codon usage bias, including gene expression level (reflecting selection for optimizing the translation process by tRNA abundance),
guanine-cytosine content In molecular biology and genetics, GC-content (or guanine-cytosine content) is the percentage of nitrogenous bases in a DNA or RNA molecule that are either guanine (G) or cytosine (C). This measure indicates the proportion of G and C bases out o ...
(GC content, reflecting horizontal gene transfer or mutational bias),
guanine-cytosine skew GC skew is when the nucleotides guanine and cytosine are over- or under-abundant in a particular region of DNA or RNA. GC skew is also a statistical method for measuring strand-specific guanine overrepresentation. In equilibrium conditions ...
(GC skew, reflecting strand-specific mutational bias), amino acid conservation, protein hydropathy, transcriptional selection, RNA stability, optimal growth temperature, hypersaline adaptation, and dietary nitrogen.


Evolutionary theories


Mutational bias versus selection

Although the mechanism of codon bias selection remains controversial, possible explanations for this bias fall into two general categories. One explanation revolves around the ''selectionist theory'', in which codon bias contributes to the efficiency and/or accuracy of protein expression and therefore undergoes
positive selection In population genetics, directional selection, is a mode of negative natural selection in which an extreme phenotype is favored over other phenotypes, causing the allele frequency to shift over time in the direction of that phenotype. Under dir ...
. The selectionist model also explains why more frequent codons are recognized by more abundant tRNA molecules, as well as the correlation between preferred codons, tRNA levels, and gene copy numbers. Although it has been shown that the rate of amino acid incorporation at more frequent codons occurs at a much higher rate than that of rare codons, the speed of translation has not been shown to be directly affected and therefore the bias towards more frequent codons may not be directly advantageous. However, the increase in translation elongation speed may still be indirectly advantageous by increasing the cellular concentration of free ribosomes and potentially the rate of initiation for
messenger RNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of synthesizing a protein. mRNA is created during the p ...
s (mRNAs). The second explanation for codon usage can be explained by ''mutational bias'', a theory which posits that codon bias exists because of nonrandomness in the mutational patterns. In other words, some codons can undergo more changes and therefore result in lower equilibrium frequencies, also known as “rare” codons. Different organisms also exhibit different mutational biases, and there is growing evidence that the level of genome-wide GC content is the most significant parameter in explaining codon bias differences between organisms. Additional studies have demonstrated that codon biases can be statistically predicted in
prokaryotes A prokaryote () is a single-celled organism that lacks a nucleus and other membrane-bound organelles. The word ''prokaryote'' comes from the Greek πρό (, 'before') and κάρυον (, 'nut' or 'kernel').Campbell, N. "Biology:Concepts & Connec ...
using only intergenic sequences, arguing against the idea of selective forces on
coding regions The coding region of a gene, also known as the coding sequence (CDS), is the portion of a gene's DNA or RNA that codes for protein. Studying the length, composition, regulation, splicing, structures, and functions of coding regions compared to non ...
and further supporting the mutation bias model. However, this model alone cannot fully explain why preferred codons are recognized by more abundant tRNAs.


Mutation-selection-drift balance model

To reconcile the evidence from both mutational pressures and selection, the prevailing hypothesis for codon bias can be explained by the ''mutation-selection-drift balance model''. This hypothesis states that selection favors major codons over minor codons, but minor codons are able to persist due to mutation pressure and genetic drift. It also suggests that selection is generally weak, but that selection intensity scales to higher expression and more functional constraints of coding sequences.


Consequences of codon composition


Effect on RNA secondary structure

Because
secondary structure Protein secondary structure is the three dimensional conformational isomerism, form of ''local segments'' of proteins. The two most common Protein structure#Secondary structure, secondary structural elements are alpha helix, alpha helices and beta ...
of the
5’ end Directionality, in molecular biology and biochemistry, is the end-to-end chemical orientation of a single strand of nucleic acid. In a single strand of DNA or RNA, the chemical convention of naming carbon atoms in the nucleotide pentose-sugar-ri ...
of mRNA influences translational efficiency, synonymous changes at this region on the mRNA can result in profound effects on gene expression. Codon usage in noncoding DNA regions can therefore play a major role in RNA secondary structure and downstream protein expression, which can undergo further selective pressures. In particular, strong secondary structure at the
ribosome-binding site A ribosome binding site, or ribosomal binding site (RBS), is a sequence of nucleotides upstream of the start codon of an mRNA transcript that is responsible for the recruitment of a ribosome during the initiation of translation. Mostly, RBS refers ...
or
initiation codon The start codon is the first codon of a messenger RNA (mRNA) transcript translated by a ribosome. The start codon always codes for methionine in eukaryotes and Archaea and a N-formylmethionine (fMet) in bacteria, mitochondria and plastids ...
can inhibit translation, and mRNA folding at the 5’ end generates a large amount of variation in protein levels.


Effect on transcription or gene expression

Heterologous gene expression is used in many biotechnological applications, including protein production and metabolic engineering. Because tRNA pools vary between different organisms, the rate of transcription and translation of a particular coding sequence can be less efficient when placed in a non-native context. For an overexpressed transgene, the corresponding mRNA makes a large percent of total cellular RNA, and the presence of rare codons along the transcript can lead to inefficient use and depletion of ribosomes and ultimately reduce levels of heterologous protein production. In addition, the composition of the gene (e.g. the total number of rare codons and the presence of consecutive rare codons) may also affect translation accuracy. However, using codons that are optimized for tRNA pools in a particular host to overexpress a heterologous gene may also cause amino acid starvation and alter the equilibrium of tRNA pools. This method of adjusting codons to match host tRNA abundances, called
codon optimization Codon usage bias refers to differences in the frequency of occurrence of Synonymous substitution, synonymous codons in coding DNA. A codon is a series of three nucleotides (a triplet) that encodes a specific amino acid residue in a polypeptide cha ...
, has traditionally been used for expression of a heterologous gene. However, new strategies for optimization of heterologous expression consider global nucleotide content such as local mRNA folding, codon pair bias, a codon ramp,
codon harmonization The genetic code is the set of rules used by living cells to translate information encoded within genetic material ( DNA or RNA sequences of nucleotide triplets, or codons) into proteins. Translation is accomplished by the ribosome, which links ...
or codon correlations. With the number of nucleotide changes introduced, artificial gene synthesis is often necessary for the creation of such an optimized gene. Specialized codon bias is further seen in some
endogenous Endogenous substances and processes are those that originate from within a living system such as an organism, tissue, or cell. In contrast, exogenous substances and processes are those that originate from outside of an organism. For example, es ...
genes such as those involved in amino acid starvation. For example, amino acid biosynthetic enzymes preferentially use codons that are poorly adapted to normal tRNA abundances, but have codons that are adapted to tRNA pools under starvation conditions. Thus, codon usage can introduce an additional level of transcriptional regulation for appropriate gene expression under specific cellular conditions.


Effect on speed of translation elongation

Generally speaking for highly expressed genes, translation elongation rates are faster along transcripts with higher codon adaptation to tRNA pools, and slower along transcripts with rare codons. This correlation between codon translation rates and cognate tRNA concentrations provides additional modulation of translation elongation rates, which can provide several advantages to the organism. Specifically, codon usage can allow for global regulation of these rates, and rare codons may contribute to the accuracy of translation at the expense of speed.


Effect on protein folding

Protein folding ''in vivo'' is vectorial, such that the
N-terminus The N-terminus (also known as the amino-terminus, NH2-terminus, N-terminal end or amine-terminus) is the start of a protein or polypeptide, referring to the free amine group (-NH2) located at the end of a polypeptide. Within a peptide, the ami ...
of a protein exits the translating ribosome and becomes solvent-exposed before its more C-terminal regions. As a result, co-translational protein folding introduces several spatial and temporal constraints on the nascent polypeptide chain in its folding trajectory. Because mRNA translation rates are coupled to protein folding, and codon adaptation is linked to translation elongation, it has been hypothesized that manipulation at the sequence level may be an effective strategy to regulate or improve protein folding. Several studies have shown that pausing of translation as a result of local mRNA structure occurs for certain proteins, which may be necessary for proper folding. Furthermore,
synonymous mutations A synonymous substitution (often called a ''silent'' substitution though they are not always silent) is the evolutionary substitution of one base for another in an exon of a gene coding for a protein, such that the produced amino acid sequence ...
have been shown to have significant consequences in the folding process of the nascent protein and can even change substrate specificity of enzymes. These studies suggest that codon usage influences the speed at which polypeptides emerge vectorially from the ribosome, which may further impact protein folding pathways throughout the available structural space.


Methods of analysis

In the field of
bioinformatics Bioinformatics () is an interdisciplinary field that develops methods and software tools for understanding biological data, in particular when the data sets are large and complex. As an interdisciplinary field of science, bioinformatics combi ...
and
computational biology Computational biology refers to the use of data analysis, mathematical modeling and computational simulations to understand biological systems and relationships. An intersection of computer science, biology, and big data, the field also has fo ...
, many statistical methods have been proposed and used to analyze codon usage bias. Methods such as the 'frequency of optimal codons' (Fop), the relative codon adaptation (RCA) or the codon adaptation index (CAI) are used to predict gene expression levels, while methods such as the ' effective number of codons' (Nc) and Shannon entropy from
information theory Information theory is the scientific study of the quantification (science), quantification, computer data storage, storage, and telecommunication, communication of information. The field was originally established by the works of Harry Nyquist a ...
are used to measure codon usage evenness. Multivariate statistical methods, such as
correspondence analysis Correspondence analysis (CA) is a multivariate statistical technique proposed by Herman Otto Hartley (Hirschfeld) and later developed by Jean-Paul Benzécri. It is conceptually similar to principal component analysis, but applies to categorical rat ...
and
principal component analysis Principal component analysis (PCA) is a popular technique for analyzing large datasets containing a high number of dimensions/features per observation, increasing the interpretability of data while preserving the maximum amount of information, and ...
, are widely used to analyze variations in codon usage among genes. There are many computer programs to implement the statistical analyses enumerated above, including CodonW, GCUA, INCA, etc. Codon optimization has applications in designing synthetic genes and
DNA vaccines A DNA vaccine is a type of vaccine that transfects a specific antigen-coding DNA sequence into the cells of an organism as a mechanism to induce an immune response. DNA vaccines work by injecting genetically engineered plasmid containing the D ...
. Several software packages are available online for this purpose (refer to external links).


References


External links


Composition Analysis Toolkit
: estimating codon usage bias and its statistical significance
HIVE-Codon Usage Table database

Codon Usage Database

CodonW

GCUA - General Codon Usage Analysis

Graphical Codon Usage Analyser

JCat - Java Codon Usage Adaptation Tool

INCA - Interactive Codon Analysis software

ACUA - Automated Codon Usage Analysis Tool
{{Webarchive, url=https://web.archive.org/web/20200726121411/http://www.bioinsilico.com/acua , date=2020-07-26
OPTIMIZER - Codon usage optimization

HEG-DB - Highly Expressed Genes Database

E-CAI - Expected value of Codon Adaptation Index

CAIcal -Set of tools to assess codon usage adaptation

scRCA - Automatic determination of translational codon usage bias

Online Synonymous Codon Usage Analyses with the ade4 and seqinR packages

Genetic Algorithm Simulation for Codon Optimization
Molecular biology Gene expression