HOME

TheInfoList



OR:

Clastic rocks are composed of fragments, or clasts, of pre-existing minerals and rock. A clast is a fragment of geological detritus,Essentials of Geology, 3rd Ed, Stephen Marshak, p. G-3 chunks, and smaller grains of rock broken off other rocks by physical weathering.Essentials of Geology, 3rd Ed, Stephen Marshak, p. G-5 Geologists use the term clastic to refer to sedimentary rocks and particles in
sediment transport Sediment transport is the movement of solid particles (sediment), typically due to a combination of gravity acting on the sediment, and/or the movement of the fluid in which the sediment is entrained. Sediment transport occurs in natural system ...
, whether in suspension or as bed load, and in sediment deposits.


Sedimentary clastic rocks

Clastic sedimentary rocks are rocks composed predominantly of broken pieces or ''clasts'' of older weathered and eroded rocks. Clastic sediments or sedimentary rocks are classified based on
grain size Grain size (or particle size) is the diameter of individual grains of sediment, or the lithified particles in clastic rocks. The term may also be applied to other granular materials. This is different from the crystallite size, which refer ...
, clast and cementing material (
matrix Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** '' The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchi ...
) composition, and texture. The classification factors are often useful in determining a sample's environment of deposition. An example of clastic environment would be a river system in which the full range of grains being transported by the moving water consist of pieces eroded from solid rock upstream. Grain size varies from clay in
shale Shale is a fine-grained, clastic sedimentary rock formed from mud that is a mix of flakes of clay minerals (hydrous aluminium phyllosilicates, e.g. kaolin, Al2 Si2 O5( OH)4) and tiny fragments (silt-sized particles) of other minerals, especial ...
s and
claystone Mudrocks are a class of fine-grained siliciclastic sedimentary rocks. The varying types of mudrocks include siltstone, claystone, mudstone, slate, and shale. Most of the particles of which the stone is composed are less than and are too sm ...
s; through silt in
siltstone Siltstone, also known as aleurolite, is a clastic sedimentary rock that is composed mostly of silt. It is a form of mudrock with a low clay mineral content, which can be distinguished from shale by its lack of fissility.Blatt ''et al.'' 1980, p ...
s; sand in sandstones; and
gravel Gravel is a loose aggregation of rock fragments. Gravel occurs naturally throughout the world as a result of sedimentary and erosive geologic processes; it is also produced in large quantities commercially as crushed stone. Gravel is classifi ...
, cobble, to
boulder In geology, a boulder (or rarely bowlder) is a rock fragment with size greater than in diameter. Smaller pieces are called cobbles and pebbles. While a boulder may be small enough to move or roll manually, others are extremely massive. In c ...
sized fragments in conglomerates and breccias. The Krumbein phi (φ) scale numerically orders these terms in a logarithmic size scale.


Siliciclastic sedimentary rocks

''Siliciclastic'' rocks are clastic noncarbonate rocks that are composed almost exclusively of silicon, either as forms of quartz or as silicates.


Composition

The composition of siliciclastic sedimentary rocks includes the chemical and mineralogical components of the framework as well as the cementing material that make up these rocks. Boggs divides them into four categories; major minerals, accessory minerals, rock fragments, and chemical sediments.Boggs, Jr., Sam. Principles of Sedimentology and Stratigraphy. Pearson Prentice Hall: Upper Saddle River, New Jersey, 2006 Major minerals can be categorized into subdivisions based on their resistance to chemical decomposition. Those that possess a great resistance to decomposition are categorized as stable, while those that do not are considered less stable. The most common stable mineral in siliciclastic sedimentary rocks is quartz (SiO2). Quartz makes up approximately 65 percent of framework grains present in sandstones and about 30 percent of minerals in the average shale. Less stable minerals present in this type of rocks are feldspars, including both potassium and plagioclase feldspars. Feldspars comprise a considerably lesser portion of framework grains and minerals. They only make up about 15 percent of framework grains in sandstones and 5% of minerals in shales. Clay mineral groups are mostly present in mudrocks (comprising more than 60% of the minerals) but can be found in other siliciclastic sedimentary rocks at considerably lower levels. Accessory minerals are associated with those whose presence in the rock are not directly important to the classification of the specimen. These generally occur in smaller amounts in comparison to the quartz, and feldspars. Furthermore, those that do occur are generally heavy minerals or coarse grained micas (both muscovite and
biotite Biotite is a common group of phyllosilicate minerals within the mica group, with the approximate chemical formula . It is primarily a solid-solution series between the iron-endmember annite, and the magnesium-endmember phlogopite; more alumino ...
). Rock fragments also occur in the composition of siliciclastic sedimentary rocks and are responsible for about 10–15 percent of the composition of sandstone. They generally make up most of the gravel size particles in conglomerates but contribute only a very small amount to the composition of mudrocks. Though they sometimes are, rock fragments are not always sedimentary in origin. They can also be metamorphic or igneous. Chemical cements vary in abundance but are predominantly found in sandstones. The two major types are silicate based and carbonate based. The majority of silica cements are composed of quartz, but can include chert, opal, feldspars and zeolites. Composition includes the chemical and mineralogic make-up of the single or varied fragments and the cementing material (
matrix Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** '' The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchi ...
) holding the clasts together as a rock. These differences are most commonly used in the framework grains of sandstones. Sandstones rich in quartz are called quartz arenites, those rich in feldspar are called
arkose Arkose () or arkosic sandstone is a detrital sedimentary rock, specifically a type of sandstone containing at least 25% feldspar. Arkosic sand is sand that is similarly rich in feldspar, and thus the potential precursor of arkose. Quartz is c ...
s, and those rich in lithics are called
lithic sandstone Lithic sandstones, or lithic arenites, or litharenites, are sandstones with a significant (>5%) component of lithic fragments, though quartz and feldspar are usually present as well, along with some clayey matrix. Lithic sandstones can have ...
s.


Classification

Siliciclastic sedimentary rocks are composed of mainly silicate particles derived from the weathering of older rocks and pyroclastic volcanism. While grain size, clast and cementing material (matrix) composition, and texture are important factors when regarding composition, siliciclastic sedimentary rocks are classified according to grain size into three major categories: conglomerates, sandstones, and
mudrock Mudrocks are a class of fine-grained siliciclastic sedimentary rocks. The varying types of mudrocks include siltstone, claystone, mudstone, slate, and shale. Most of the particles of which the stone is composed are less than and are too ...
s. The term ''clay'' is used to classify particles smaller than .0039 millimeters. However, the term can also be used to refer to a family of sheet silicate minerals. ''Silt'' refers to particles that have a diameter between .062 and .0039 millimeters. The term ''mud'' is used when clay and silt particles are mixed in the sediment; ''mudrock'' is the name of the rock created with these sediments. Furthermore, particles that reach diameters between .062 and 2 millimeters fall into the category of sand. When sand is cemented together and lithified it becomes known as sandstone. Any particle that is larger than two millimeters is considered gravel. This category includes
pebble A pebble is a clast of rock with a particle size of based on the Udden-Wentworth scale of sedimentology. Pebbles are generally considered larger than granules ( in diameter) and smaller than cobbles ( in diameter). A rock made predominant ...
s, cobbles and boulders. Like sandstone, when gravels are lithified they are considered conglomerates.


= Conglomerates and breccias

= Conglomerates are coarse grained rocks dominantly composed of gravel sized particles that are typically held together by a finer grained matrix.Neuendorf, Klaus; Mehl, James; Jackson, Julia Glossary of Geology, Fifth Edition. American Geological Institute: Alexandria, VA; 2005. These rocks are often subdivided into conglomerates and breccias. The major characteristic that divides these two categories is the amount of rounding. The gravel sized particles that make up conglomerates are well rounded while in breccias they are angular. Conglomerates are common in stratigraphic successions of most, if not all, ages but only make up one percent or less, by weight, of the total sedimentary rock mass. In terms of origin and depositional mechanisms they are very similar to sandstones. As a result, the two categories often contain the same sedimentary structures.


=Sandstones

= Sandstones are medium-grained rocks composed of rounded or angular fragments of sand size, that often but not always have a cement uniting them together. These sand-size particles are often quartz but there are a few common categories and a wide variety of classification schemes that classify sandstones based on composition. Classification schemes vary widely, but most geologists have adopted the Dott scheme,Dott, R. H., Wacke, graywacke and matrix – What Approach to Immature Sandstone Classification: Journal of Sedimentary Petrology, v. 34, pp. 625–32., 1996. which uses the relative abundance of quartz, feldspar, and lithic framework grains and the abundance of muddy matrix between these larger grains.


=Mudrocks

= Rocks that are classified as mudrocks are very fine grained. Silt and clay represent at least 50% of the material that mudrocks are composed of. Classification schemes for mudrocks tend to vary, but most are based on the grain size of the major constituents. In mudrocks, these are generally silt, and clay. According to Blatt, Middleton and Murray Blatt, h., Middleton, G. V. & Murray, R. C. 1972. Origin of Sedimentary Rocks. Prentice Hall Inc., Englewood Cliffs, 634 pp. mudrocks that are composed mainly of silt particles are classified as siltstones. In turn, rocks that possess clay as the majority particle are called claystones. In geology, a mixture of both silt and clay is called mud. Rocks that possess large amounts of both clay and silt are called mudstones. In some cases the term shale is also used to refer to mudrocks and is still widely accepted by most. However, others have used the term shale to further divide mudrocks based on the percentage of clay constituents. The plate-like shape of clay allows its particles to stack up one on top of another, creating laminae or beds. The more clay present in a given specimen, the more laminated a rock is. Shale, in this case, is reserved for mudrocks that are laminated, while mudstone refers those that are not. Image:Red mudrock.JPG, Red mudrock Image:MarcellusShaleCloseUp.jpg, Black Shale


Diagenesis of siliciclastic sedimentary rocks

Siliciclastic rocks initially form as loosely packed sediment deposits including gravels, sands, and muds. The process of turning loose sediment into hard sedimentary rocks is called lithification. During the process of lithification, sediments undergo physical, chemical and mineralogical changes before becoming rock. The primary physical process in lithification is compaction. As sediment transport and deposition continues, new sediments are deposited atop previously deposited beds, burying them. Burial continues and the weight of overlying sediments causes an increase in temperature and pressure. This increase in temperature and pressure causes loose grained sediments become tightly packed, reducing porosity, essentially squeezing water out of the sediment. Porosity is further reduced by the precipitation of minerals into the remaining pore spaces. The final stage in the process is diagenesis and will be discussed in detail below.


Cementation

Cementation is the diagenetic process by which coarse clastic sediments become lithified or consolidated into hard, compact rocks, usually through the deposition or precipitation of minerals in the spaces between the individual grains of sediment. Cementation can occur simultaneously with deposition or at another time. Furthermore, once a sediment is deposited, it becomes subject to cementation through the various stages of diagenesis discussed below.


Shallow burial (eogenesis)

Eogenesis refers to the early stages of diagenesis. This can take place at very shallow depths, ranging from a few meters to tens of meters below the surface. The changes that occur during this diagenetic phase mainly relate to the reworking of the sediments. Compaction and grain repacking,
bioturbation Bioturbation is defined as the reworking of soils and sediments by animals or plants. It includes burrowing, ingestion, and defecation of sediment grains. Bioturbating activities have a profound effect on the environment and are thought to be a pr ...
, as well as mineralogical changes all occur at varying degrees. Due to the shallow depths, sediments undergo only minor compaction and grain rearrangement during this stage. Organisms rework sediment near the depositional interface by burrowing, crawling, and in some cases sediment ingestion. This process can destroy sedimentary structures that were present upon deposition of the sediment. Structures such as lamination will give way to new structures associated with the activity of organisms. Despite being close to the surface, eogenesis does provide conditions for important mineralogical changes to occur. This mainly involves the precipitation of new minerals.


=Mineralogical changes during eogenesis

= Mineralogical changes that occur during eogenesis are dependent on the environment in which that sediment has been deposited. For example, the formation of pyrite is characteristic of reducing conditions in marine environments. Pyrite can form as cement, or replace organic materials, such as wood fragments. Other important reactions include the formation of
chlorite The chlorite ion, or chlorine dioxide anion, is the halite with the chemical formula of . A chlorite (compound) is a compound that contains this group, with chlorine in the oxidation state of +3. Chlorites are also known as salts of chlorous ac ...
, glauconite, illite and
iron oxide Iron oxides are chemical compounds composed of iron and oxygen. Several iron oxides are recognized. All are black magnetic solids. Often they are non-stoichiometric. Oxyhydroxides are a related class of compounds, perhaps the best known of whic ...
(if oxygenated pore water is present). The precipitation of potassium feldspar, quartz overgrowths, and carbonate cements also occurs under marine conditions. In non marine environments oxidizing conditions are almost always prevalent, meaning iron oxides are commonly produced along with kaolin group clay minerals. The precipitation of quartz and calcite cements may also occur in non marine conditions.


Deep burial (mesogenesis)


=Compaction

= As sediments are buried deeper, load pressures become greater resulting in tight grain packing and bed thinning. This causes increased pressure between grains thus increasing the solubility of grains. As a result, the partial dissolution of silicate grains occurs. This is called pressure solutions. Chemically speaking, increases in temperature can also cause chemical reaction rates to increase. This increases the solubility of most common minerals (aside from evaporites). Furthermore, beds thin and porosity decreases allowing cementation to occur by the precipitation of silica or carbonate cements into remaining pore space. In this process minerals crystallize from watery solutions that percolate through the pores between grain of sediment. The cement that is produced may or may not have the same chemical composition as the sediment. In sandstones, framework grains are often cemented by silica or carbonate. The extent of cementation is dependent on the composition of the sediment. For example, in lithic sandstones, cementation is less extensive because pore space between framework grains is filled with a muddy matrix that leaves little space for precipitation to occur. This is often the case for mudrocks as well. As a result of compaction, the clayey sediments comprising mudrocks are relatively impermeable.


=Dissolution

= Dissolution of framework silicate grains and previously formed carbonate cement may occur during deep burial. Conditions that encourage this are essentially opposite of those required for cementation. Rock fragments and silicate minerals of low stability, such as plagioclase feldspar,
pyroxene The pyroxenes (commonly abbreviated to ''Px'') are a group of important rock-forming inosilicate minerals found in many igneous and metamorphic rocks. Pyroxenes have the general formula , where X represents calcium (Ca), sodium (Na), iron (Fe II) ...
s, and
amphibole Amphibole () is a group of inosilicate minerals, forming prism or needlelike crystals, composed of double chain tetrahedra, linked at the vertices and generally containing ions of iron and/or magnesium in their structures. Its IMA symbol is A ...
s, may dissolve as a result of increasing burial temperatures and the presence of organic acids in pore waters. The dissolution of frame work grains and cements increases porosity particularly in sandstones.


=Mineral replacement

= This refers to the process whereby one mineral is dissolved and a new mineral fills the space via precipitation. Replacement can be partial or complete. Complete replacement destroys the identity of the original minerals or rock fragments giving a biased view of the original mineralogy of the rock. Porosity can also be affected by this process. For example, clay minerals tend to fill up pore space and thereby reducing porosity.


Telogenesis

In the process of burial, it is possible that siliciclastic deposits may subsequently be uplifted as a result of a mountain building event or erosion. When uplift occurs, it exposes buried deposits to a radically new environment. Because the process brings material to or closer to the surface, sediments that undergo uplift are subjected to lower temperatures and pressures as well as slightly acidic rain water. Under these conditions, framework grains and cement are again subjected to dissolution and in turn increasing porosity. On the other hand, telogenesis can also change framework grains to clays, thus reducing porosity. These changes are dependent on the specific conditions that the rock is exposed as well as the composition of the rock and pore waters. Specific pore waters, can cause the further precipitation of carbonate or silica cements. This process can also encourage the process of oxidation on a variety of iron bearing minerals.


Sedimentary breccias

Sedimentary breccias are a type of clastic sedimentary rock which are composed of angular to subangular, randomly oriented clasts of other sedimentary rocks. They may form either: # In submarine debris flows, avalanches, mud flow or mass flow in an aqueous medium. Technically, turbidites are a form of debris flow deposit and are a fine-grained peripheral deposit to a sedimentary breccia flow. # As angular, poorly sorted, very immature fragments of rocks in a finer grained groundmass which are produced by mass wasting. These are, in essence, lithified colluvium. Thick sequences of sedimentary (colluvial) breccias are generally formed next to fault scarps in
graben In geology, a graben () is a depressed block of the crust of a planet or moon, bordered by parallel normal faults. Etymology ''Graben'' is a loan word from German, meaning 'ditch' or 'trench'. The word was first used in the geologic contex ...
s. In the field, it may at times be difficult to distinguish between a debris flow sedimentary breccia and a colluvial breccia, especially if one is working entirely from
drilling Drilling is a cutting process where a drill bit is spun to cut a hole of circular cross-section in solid materials. The drill bit is usually a rotary cutting tool, often multi-point. The bit is pressed against the work-piece and rotated at ra ...
information. Sedimentary breccias are an integral host rock for many sedimentary exhalative deposits.


Igneous clastic rocks

Clastic
igneous rocks Igneous rock (derived from the Latin word ''ignis'' meaning fire), or magmatic rock, is one of the three main rock types, the others being sedimentary and metamorphic. Igneous rock is formed through the cooling and solidification of magma or ...
include
pyroclastic Pyroclastic rocks (derived from the el, πῦρ, links=no, meaning fire; and , meaning broken) are clastic rocks composed of rock fragments produced and ejected by explosive volcanic eruptions. The individual rock fragments are known as pyroc ...
volcanic rocks such as tuff,
agglomerate Agglomerate (from the Latin ''agglomerare'' meaning "to form into a ball") is a coarse accumulation of large blocks of volcanic material that contains at least 75% bombs. Volcanic bombs differ from volcanic blocks in that their shape records flui ...
and intrusive breccias, as well as some marginal eutaxitic and taxitic intrusive morphologies. Igneous clastic rocks are broken by flow, injection or explosive disruption of solid or semi-solid igneous rocks or lavas. Igneous clastic rocks can be divided into two classes: # Broken, fragmental rocks produced by intrusive processes, usually associated with plutons or porphyry stocks # Broken, fragmental rocks associated with volcanic eruptions, both of lava and pyroclastic type


Metamorphic clastic rocks

Clastic metamorphic rocks include breccias formed in faults, as well as some protomylonite and pseudotachylite. Occasionally, metamorphic rocks can be brecciated via hydrothermal fluids, forming a hydrofracture breccia.


Hydrothermal clastic rocks

Hydrothermal clastic rocks are generally restricted to those formed by hydrofracture, the process by which hydrothermal circulation cracks and brecciates the wall rocks and fills it in with veins. This is particularly prominent in epithermal ore deposits and is associated with alteration zones around many intrusive rocks, especially granites. Many skarn and greisen deposits are associated with hydrothermal breccias.


Impact breccias

A fairly rare form of clastic rock may form during
meteorite A meteorite is a solid piece of debris from an object, such as a comet, asteroid, or meteoroid, that originates in outer space and survives its passage through the atmosphere to reach the surface of a planet or Natural satellite, moon. When the ...
impact. This is composed primarily of ejecta; clasts of
country rock Country rock is a genre of music which fuses rock and country. It was developed by rock musicians who began to record country-flavored records in the late 1960s and early 1970s. These musicians recorded rock records using country themes, vocal s ...
, melted rock fragments, tektites (glass ejected from the impact crater) and exotic fragments, including fragments derived from the impactor itself. Identifying a clastic rock as an impact breccia requires recognising shatter cones, tektites, spherulites, and the morphology of an impact
crater Crater may refer to: Landforms *Impact crater, a depression caused by two celestial bodies impacting each other, such as a meteorite hitting a planet *Explosion crater, a hole formed in the ground produced by an explosion near or below the surfac ...
, as well as potentially recognizing particular chemical and trace element signatures, especially
osmiridium Osmiridium and iridosmine are natural alloys of the elements osmium and iridium, with traces of other platinum-group metals. Osmiridium has been defined as containing a higher proportion of iridium, with iridosmine containing more osmium. However ...
.


References

{{DEFAULTSORT:Clastic Rock Sedimentology Metamorphic rocks Igneous rocks he:סלע משקע#סלעים קלאסטיים