HOME

TheInfoList



OR:

The
enzyme An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
chorismate synthase (EC 4.2.3.5) catalyzes the
chemical reaction A chemical reaction is a process that leads to the chemistry, chemical transformation of one set of chemical substances to another. When chemical reactions occur, the atoms are rearranged and the reaction is accompanied by an Gibbs free energy, ...
:5-''O''-(1-carboxyvinyl)-3-phosphoshikimate \rightleftharpoons chorismate + phosphate This enzyme belongs to the family of lyases, specifically those carbon-oxygen lyases acting on phosphates. The
systematic name A systematic name is a name given in a systematic way to one unique group, organism, object or chemical substance, out of a specific population or collection. Systematic names are usually part of a nomenclature. A semisystematic name or semitrivi ...
of this enzyme class is 5-''O''-(1-carboxyvinyl)-3-phosphoshikimate phosphate-lyase (chorismate-forming). This enzyme is also called 5-''O''-(1-carboxyvinyl)-3-phosphoshikimate phosphate-lyase. This enzyme participates in
phenylalanine Phenylalanine (symbol Phe or F) is an essential α-amino acid with the chemical formula, formula . It can be viewed as a benzyl group substituent, substituted for the methyl group of alanine, or a phenyl group in place of a terminal hydrogen of ...
, tyrosine and
tryptophan Tryptophan (symbol Trp or W) is an α-amino acid that is used in the biosynthesis of proteins. Tryptophan contains an α-amino group, an α-carboxylic acid group, and a side chain indole, making it a polar molecule with a non-polar aromat ...
biosynthesis. Chorismate synthase catalyzes the last of the seven steps in the shikimate pathway which is used in prokaryotes, fungi and plants for the biosynthesis of aromatic amino acids. It catalyzes the 1,4-trans elimination of the
phosphate group Phosphates are the naturally occurring form of the element phosphorus. In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthophosp ...
from 5-enolpyruvylshikimate-3-phosphate (EPSP) to form chorismate which can then be used in phenylalanine, tyrosine or tryptophan biosynthesis. Chorismate synthase requires the presence of a reduced flavin mononucleotide (FMNH2 or FADH2) for its activity. Chorismate synthase from various sources shows a high degree of sequence conservation. It is a protein of about 360 to 400 amino-acid residues.


Biological and practical function

The shikimate pathway synthesises precursors to aromatic amino acids, as well as other aromatic compounds that have various involvement with processes such as "UV protection, electron transport, signaling, communication, plant defense, and the wound response". Because humans lack the shikimate pathway, but it is required for the survival of many microorganisms, the pathway and chorismate synthase in particular are considered to be potential targets for new
antimicrobial An antimicrobial is an agent that kills microorganisms (microbicide) or stops their growth (bacteriostatic agent). Antimicrobial medicines can be grouped according to the microorganisms they are used to treat. For example, antibiotics are used aga ...
treatments. For example, chorismate synthase is known to be essential to the survival of ''Mycobacterium tuberculosis'', making the enzyme an attractive
antibiotic An antibiotic is a type of antimicrobial substance active against bacteria. It is the most important type of antibacterial agent for fighting pathogenic bacteria, bacterial infections, and antibiotic medications are widely used in the therapy ...
target for control of this pathogen.


Structural studies

As of late 2007, 9 structures have been solved for this class of enzymes, with PDB accession codes , , , , , , , , and . The crystal structure of chorismate synthase is a homotetramer with one FMN molecule non-covalently bound to each of the four
monomers A monomer ( ; ''wikt:mono-, mono-'', "one" + ''wikt:-mer, -mer'', "part") is a molecule that can chemical reaction, react together with other monomer molecules to form a larger polymer chain or two- or three-dimensional network in a process called ...
. Each monomer is made up of 9 alpha helices and 18 beta strands and the core is assembled in a unique beta-alpha-beta sandwich fold. The active sites for FMN-binding are made up of clusters of flexible loops and the area around these regions have highly positive electromagnetic potential. There are two
histidine Histidine (symbol His or H) is an essential amino acid that is used in the biosynthesis of proteins. It contains an Amine, α-amino group (which is in the protonated –NH3+ form under Physiological condition, biological conditions), a carboxylic ...
residues located at the active site which are thought to protonate the reduced flavin molecule and the leaving phosphate group of the substrate.


Mechanism

The formation of chorismate from EPSP involves two eliminations, of phosphate and a proton (H+), from the substrate. In the first step of catalysis, phosphate is eliminated, assisted by proton transfer from a conserved
histidine Histidine (symbol His or H) is an essential amino acid that is used in the biosynthesis of proteins. It contains an Amine, α-amino group (which is in the protonated –NH3+ form under Physiological condition, biological conditions), a carboxylic ...
residue. At the same time, an electron is transferred from the FMN to the substrate, forming an FMN radical and a substrate radical. Next, the FMN radical rearranges, and then a hydrogen atom is transferred to FMN from the substrate, eliminating both radicals and generating the product. The reduced FMN then re-tautomerizes to its active form by donating a proton to a second conserved histidine. Although the chorismate synthase reaction is FMN-dependent, there is no net
redox Redox ( , , reduction–oxidation or oxidation–reduction) is a type of chemical reaction in which the oxidation states of the reactants change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is t ...
change between substrate and product; the FMN merely acts as a
catalyst Catalysis () is the increase in rate of a chemical reaction due to an added substance known as a catalyst (). Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quick ...
. Two classes of chorismate synthase exist, differing in how the reduced state of the FMN cofactor is maintained. Bifunctional chorismate synthase is present in fungi and contains an NAD(P)H-dependent flavin reductase domain. Monofunctional chorismate synthase is found in plants and ''E.coli'' and lacks a flavin reductase domain. It depends on a separate reductase enzyme to reduce the FMN.


References

* * * * * *


External links

* {{Portal bar, Biology, border=no EC 4.2.3 Enzymes of known structure