Chirped pulse amplification (CPA) is a technique for amplifying an ultrashort
laser
A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The fir ...
pulse up to the
petawatt
The watt (symbol: W) is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m2⋅s−3. It is used to quantify the rate of energy transfer. The watt is named after James Watt ...
level, with the laser pulse being stretched out temporally and spectrally, then amplified, and then compressed again. The stretching and compression uses devices that ensure that the different color components of the pulse travel different distances.
CPA for lasers was introduced by
Donna Strickland
Donna Theo Strickland (born 27 May 1959) is a Canadian optical physicist and pioneer in the field of pulsed lasers. She was awarded the Nobel Prize in Physics in 2018, together with Gérard Mourou, for the practical implementation of chirped p ...
and
Gérard Mourou
Gérard Albert Mourou (; born 22 June 1944) is a French scientist and pioneer in the field of electrical engineering and lasers. He was awarded a Nobel Prize in Physics in 2018, along with Donna Strickland, for the invention of chirped pulse a ...
at the
University of Rochester
The University of Rochester (U of R, UR, or U of Rochester) is a private research university in Rochester, New York. The university grants undergraduate and graduate degrees, including doctoral and professional degrees.
The University of Roc ...
in the mid-1980s, work for which they received the
Nobel Prize in Physics
)
, image = Nobel Prize.png
, alt = A golden medallion with an embossed image of a bearded man facing left in profile. To the left of the man is the text "ALFR•" then "NOBEL", and on the right, the text (smaller) "NAT•" then " ...
in 2018.
CPA is the current state-of-the-art technique used by most of the highest-power lasers in the world.
Background
Before the introduction of CPA in the mid-1980s, the peak
power
Power most often refers to:
* Power (physics), meaning "rate of doing work"
** Engine power, the power put out by an engine
** Electric power
* Power (social and political), the ability to influence people or events
** Abusive power
Power may a ...
of laser pulses was limited because a laser pulse at intensities of
gigawatt
The watt (symbol: W) is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m2⋅s−3. It is used to quantify the rate of energy transfer. The watt is named after James Wat ...
s per square centimeter causes serious damage to the
gain medium
The active laser medium (also called gain medium or lasing medium) is the source of optical gain within a laser. The gain results from the stimulated emission of photons through electronic or molecular transitions to a lower energy state from a ...
self-focusing
Self-focusing is a nonlinear optics, non-linear optical process induced by the change in refractive index of materials exposed to intense electromagnetic radiation. A medium whose refractive index increases with the electric field intensity acts as ...
. For example, some of the most powerful compressed CPA laser beams, even in an unfocused large aperture (after exiting the compression grating) can exceed intensities of 700 GW/cm2, which if allowed to propagate in
air
The atmosphere of Earth is the layer of gases, known collectively as air, retained by Earth's gravity that surrounds the planet and forms its planetary atmosphere. The atmosphere of Earth protects life on Earth by creating pressure allowing for ...
or the
laser gain medium
The active laser medium (also called gain medium or lasing medium) is the source of optical gain within a laser. The gain results from the stimulated emission of photons through electronic or molecular transitions to a lower energy state from a ...
would instantly self-focus and form a
plasma
Plasma or plasm may refer to:
Science
* Plasma (physics), one of the four fundamental states of matter
* Plasma (mineral), a green translucent silica mineral
* Quark–gluon plasma, a state of matter in quantum chromodynamics
Biology
* Blood pla ...
or cause
filament propagation In nonlinear optics, filament propagation is propagation of a beam of light through a medium without diffraction. This is possible because the Kerr effect causes an index of refraction change in the medium, resulting in self-focusing of the beam.
F ...
, both of which would ruin the original beam's desirable qualities and could even cause back-reflection potentially damaging the laser's components. In order to keep the intensity of laser pulses below the threshold of the nonlinear effects, the laser systems had to be large and expensive, and the peak power of laser pulses was limited to the high gigawatt level or terawatt level for very large multi-beam facilities.
In CPA, on the other hand, an ultrashort laser pulse is stretched out in time prior to introducing it to the gain medium using a pair of gratings that are arranged so that the low-frequency component of the laser pulse travels a shorter path than the high-frequency component does. After going through the grating pair, the laser pulse becomes positively
chirp
A chirp is a signal in which the frequency increases (''up-chirp'') or decreases (''down-chirp'') with time. In some sources, the term ''chirp'' is used interchangeably with sweep signal. It is commonly applied to sonar, radar, and laser system ...
ed, that is, the high-frequency component lags behind the low-frequency component, and has longer
pulse duration
In signal processing and telecommunication, pulse duration is the interval between the time, during the first transition, that the amplitude of the pulse reaches a specified fraction (level) of its final amplitude, and the time the pulse amplitude ...
than the original by a factor of 1000 to .
Then the stretched pulse, whose intensity is sufficiently low compared with the intensity limit of gigawatts per square centimeter, is safely introduced to the gain medium and amplified by a factor of a million or more. Finally, the amplified laser pulse is recompressed back to the original pulse width through reversal of the process of stretching, achieving orders-of-magnitude higher peak power than laser systems could generate before the invention of CPA.
In addition to the higher peak power, CPA makes it possible to miniaturize laser systems (the compressor being the biggest part). A compact high-power laser, known as a tabletop terawatt laser (T3 laser, typically delivering of energy within ), can be created based on the CPA technique.
Stretcher and compressor design
There are several ways to construct compressors and stretchers. However, a typical Ti:sapphire-based chirped-pulse amplifier requires that the pulses are stretched to several hundred picoseconds, which means that the different wavelength components must experience about 10 cm difference in path length. The most practical way to achieve this is with grating-based stretchers and compressors. Stretchers and compressors are characterized by their dispersion. With ''negative dispersion'', light with higher frequencies (shorter wavelengths) takes less time to travel through the device than light with lower frequencies (longer wavelengths). With ''positive dispersion'', it is the other way around. In a CPA, the dispersions of the stretcher and compressor must cancel out. Because of practical considerations, the (high-power) compressor is usually designed with negative dispersion, and the (low-power) stretcher is therefore designed with positive dispersion.
In principle, the dispersion of an optical device is a function , where is the time delay experienced by a frequency component . (Sometimes the phase is used, where is the speed of light and is the wavelength.) Each component in the whole chain from the seed laser to the output of the compressor contributes to the dispersion. It turns out to be hard to tune the dispersions of the stretcher and compressor such that the resulting pulses are shorter than about 100 femtoseconds. For this, additional dispersive elements may be needed.
With gratings
Figure 1 shows the simplest grating configuration, where long-wavelength components travel a larger distance than the short-wavelength components (negative dispersion). Often, only a single grating is used, with extra mirrors such that the beam hits the grating four times rather than two times as shown in the picture.
This setup is normally used as a compressor, since it does not involve transmissive components that could lead to unwanted side-effects when dealing with high-intensity pulses. The dispersion can be tuned easily by changing the distance between the two gratings.
Figure 2 shows a more complicated grating configuration that involves focusing elements, here depicted as lenses. The lenses are placed at a distance from each other (they act as a 1:1 telescope), and at a distance from the gratings. If