HOME

TheInfoList



OR:

In
organic chemistry Organic chemistry is a subdiscipline within chemistry involving the scientific study of the structure, properties, and reactions of organic compounds and organic materials, i.e., matter in its various forms that contain carbon atoms.Clayden, J.; ...
, cheletropic reactions, also known as chelotropic reactions,Chelotropic reaction
IUPAC GoldBook are a type of
pericyclic reaction In organic chemistry, a pericyclic reaction is the type of organic reaction wherein the transition state of the molecule has a cyclic geometry, the reaction progresses in a concerted fashion, and the bond orbitals involved in the reaction overlap ...
(a
chemical reaction A chemical reaction is a process that leads to the IUPAC nomenclature for organic transformations, chemical transformation of one set of chemical substances to another. Classically, chemical reactions encompass changes that only involve the pos ...
that involves a
transition state In chemistry, the transition state of a chemical reaction is a particular configuration along the reaction coordinate. It is defined as the state corresponding to the highest potential energy along this reaction coordinate. It is often marked wi ...
with a cyclic array of atoms and an associated cyclic array of interacting orbitals).Eric V. Anslyn and Dennis A. Dougherty ''Modern Physical Organic Chemistry'' University Science Books, 2006. Specifically, cheletropic reactions are a subclass of
cycloaddition In organic chemistry, a cycloaddition is a chemical reaction in which "two or more Unsaturated hydrocarbon, unsaturated molecules (or parts of the same molecule) combine with the formation of a cyclic adduct in which there is a net reduction of th ...
s. The key distinguishing feature of cheletropic reactions is that on one of the
reagent In chemistry, a reagent ( ) or analytical reagent is a substance or compound added to a system to cause a chemical reaction, or test if one occurs. The terms ''reactant'' and ''reagent'' are often used interchangeably, but reactant specifies a ...
s, both new bonds are being made to the same atom.Ian Fleming. ''Frontier Orbitals and Organic Chemistry Reactions.'' Wiley, 1976.


Theoretical analysis

In the pericyclic transition state, a small molecule donates two electrons to the ring. The reaction process can be shown using two different geometries, the small molecule can approach in a linear or non-linear fashion. In the linear approach, the electrons in the orbital of the small molecule are pointed directly at the π-system. In the non-linear approach, the orbital approaches at a skew angle. The π-system's ability to rotate as the small molecule approaches is crucial in forming new bonds. The direction of rotation will be different depending on how many π-electrons are in the system. Shown below is a diagram of a two-electron fragment approaching a four-electron π-system using frontier molecular orbitals. The rotation will be disrotatory if the small molecule approaches linearly and conrotatory if the molecule approaches non-linearly. Disrotatory and conrotatory are sophisticated terms expressing how the bonds in the π-system are rotating. Disrotatory means opposite directions while conrotatory means the same direction. This is also depicted in the diagram below. Using Hückel's Rule, one can tell if the π-system is aromatic or antiaromatic. If aromatic, linear approaches use disrotatory motion while non-linear approaches use conrotatory motion. The opposite goes with an anti-aromatic system. Linear approaches will have conrotatory motion while non-linear approaches will have disrotatory motion.


Cheletropic reactions involving SO2


Thermodynamics

In 1995, Suarez and Sordo showed that sulfur dioxide when reacted with
butadiene 1,3-Butadiene () is the organic compound with the formula (CH2=CH)2. It is a colorless gas that is easily condensed to a liquid. It is important industrially as a precursor to synthetic rubber. The molecule can be viewed as the union of two viny ...
and
isoprene Isoprene, or 2-methyl-1,3-butadiene, is a common volatile organic compound with the formula CH2=C(CH3)−CH=CH2. In its pure form it is a colorless volatile liquid. Isoprene is an unsaturated hydrocarbon. It is produced by many plants and animals ...
gives two different products depending on the mechanism. This was shown experimentally and using ''ab initio'' calculations. A kinetic and thermodynamic product are both possible, but the thermodynamic product is more favorable. The kinetic product arises from a
Diels–Alder reaction In organic chemistry, the Diels–Alder reaction is a chemical reaction between a conjugated diene and a substituted alkene, commonly termed the dienophile, to form a substituted cyclohexene derivative. It is the prototypical example of a peric ...
, while a cheletropic reaction gives rise to a more thermodynamically stable product. The cheletropic pathway is favored because it gives rise to a more stable five-membered ring adduct. The scheme below shows the difference between the two products, the path to the right shows the more stable thermodynamic product, while the path to the left shows the kinetic product.


Kinetics

The cheletropic reactions of 1,3-dienes with
sulfur dioxide Sulfur dioxide (IUPAC-recommended spelling) or sulphur dioxide (traditional Commonwealth English) is the chemical compound with the formula . It is a toxic gas responsible for the odor of burnt matches. It is released naturally by volcanic activ ...
have been extensively investigated in terms of kinetics (see above for general reaction). In the first quantitative measurement of kinetic parameters for this reaction, a 1976 study by Isaacs and Laila measured the rates of addition of sulfur dioxide to butadiene derivatives. Rates of addition were monitored in benzene at 30 °C with an initial twentyfold excess of sulfur dioxide, allowing for a pseudo first-order approximation. The disappearance of SO2 was followed spectrophotometrically at 320 nm. The reaction showed pseudo first-order kinetics. Some interesting results were that electron-withdrawing groups on the diene decreased the rate of reaction. Also, the reaction rate was affected considerably by steric effects of 2-substituents, with more bulky groups increasing the rate of reaction. The authors attribute this to the tendency of bulky groups to favor the cisoid conformation of the diene which is essential to the reaction (see table below). In addition, the rates at four temperatures were measured for seven of the dienes permitting calculations of the enthalpy of activation (ΔH) and entropy of activation (ΔS) for these reactions through the
Arrhenius equation In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates. The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 18 ...
. More recently, a 2002 study by Monnat, Vogel, and Sordo measured the kinetics of addition of sulfur dioxide to 1,2-dimethylidenecycloalkanes. An interesting point presented in this paper is that the reaction of 1,2-dimethylidenecyclohexane with sulfur dioxide can give two different products depending on reaction conditions. The reaction produces the corresponding sulfine through a hetero-Diels–Alder reaction under kinetic control (≤ -60 °C), but, under thermodynamic control (≥ -40 °C), the reaction produces the corresponding
sulfolene Sulfolene, or butadiene sulfone is a cyclic organic chemical with a sulfone functional group. It is a white, odorless, crystalline, indefinitely storable solid, which dissolves in water and many organic solvents. The compound is used as a source o ...
through a cheletropic reaction. The activation enthalpy for the hetero-Diels–Alder reaction is about 8 kJ/mol smaller than that for the corresponding cheletropic reaction. The sulfolene is about 40 kJ/mol more stable than the isometric sulfine in CH2Cl2/SO2 solution. The authors were able to experimentally determine a rate law at 261.2 K for the reaction of 1,2-dimethylidenecyclohexane with sulfur dioxide to give the corresponding sulfolene. The reaction was first order in 1,2-dimethylidenecyclohexane but second order in sulfur dioxide (see below). This confirmed a prediction based on high-level ''ab initio'' quantum calculations. Using computational methods, the authors proposed a transition structure for the cheletropic reaction of 1,2-dimethylidenecyclohexane with sulfur dioxide (see figure at right). The reaction is second order in sulfur dioxide because another molecule of sulfur dioxide likely binds to the transition state to help stabilize it. Similar results were found in a 1995 study by Suarez, Sordo, and Sordo which used ''ab initio'' calculations to study the kinetic and thermodynamic control of the reaction of sulfur dioxide with 1,3-dienes. :\frac=k_2 \ce]^2


Solvent effects

The effect of the solvent of the cheletropic reaction of 3,4-dimethyl-2,5-dihydrothiophen-1,1-dioxide (shown at right) was kinetically investigated in 14 solvents. The
reaction rate constant In chemical kinetics a reaction rate constant or reaction rate coefficient, ''k'', quantifies the rate and direction of a chemical reaction. For a reaction between reactants A and B to form product C the reaction rate is often found to have the ...
s of the forward and reverse reaction in addition to the
equilibrium constant The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency ...
s were found to be linearly correlated with the ET(30) solvent polarity scale. Reactions were done at 120 °C and were studied by 1H-NMR spectroscopy of the reaction mixture. The forward rate k1 was found to decrease by a factor of 4.5 going from
cyclohexane Cyclohexane is a cycloalkane with the molecular formula . Cyclohexane is non-polar. Cyclohexane is a colorless, flammable liquid with a distinctive detergent-like odor, reminiscent of cleaning products (in which it is sometimes used). Cyclohexan ...
to
methanol Methanol (also called methyl alcohol and wood spirit, amongst other names) is an organic chemical and the simplest aliphatic alcohol, with the formula C H3 O H (a methyl group linked to a hydroxyl group, often abbreviated as MeOH). It is a ...
. The reverse rate k−1 was found to increase by a factor of 53 going from
cyclohexane Cyclohexane is a cycloalkane with the molecular formula . Cyclohexane is non-polar. Cyclohexane is a colorless, flammable liquid with a distinctive detergent-like odor, reminiscent of cleaning products (in which it is sometimes used). Cyclohexan ...
to
methanol Methanol (also called methyl alcohol and wood spirit, amongst other names) is an organic chemical and the simplest aliphatic alcohol, with the formula C H3 O H (a methyl group linked to a hydroxyl group, often abbreviated as MeOH). It is a ...
, while the equilibrium constant Keq decreased by a factor of 140. It is suggested that there is a change of the polarity during the activation process as evidenced by correlations between the equilibrium and kinetic data. The authors remark that the reaction appears to be influenced by the polarity of the solvent, and this can be explained by the change in the dipole moments when going from reactant to transition state to product. The authors also state that the cheletropic reaction doesn’t seem to be influenced by either solvent acidity or basicity. The results of this study lead the authors to expect the following behaviors: 1. The change in the solvent polarity will influence the rate less than the equilibrium. 2. The rate constants will be characterized by opposite effect on the polarity: k1 will slightly decrease with the increase of ET(30), and k−1 will increase under the same conditions. 3. The effect on k−1 will be larger than on k1.


Carbene additions to alkenes

One of the most synthetically important cheletropic reactions is the addition of a singlet
carbene In organic chemistry, a carbene is a molecule containing a neutral carbon atom with a valence of two and two unshared valence electrons. The general formula is or where the R represents substituents or hydrogen atoms. The term "carbene" ma ...
to an alkene to make a
cyclopropane Cyclopropane is the cycloalkane with the molecular formula (CH2)3, consisting of three methylene groups (CH2) linked to each other to form a ring. The small size of the ring creates substantial ring strain in the structure. Cyclopropane itself ...
(see figure at left). A carbene is a neutral molecule containing a divalent carbon with six electrons in its valence shell. Due to this, carbenes are highly reactive electrophiles and generated as reaction intermediates.John McMurry ''Organic Chemistry, 6th Ed.'' Thomson, 2004. A singlet carbene contains an empty ''p'' orbital and a roughly ''sp''''2'' hybrid orbital that has two electrons. Singlet carbenes add stereospecifically to alkenes, and alkene stereochemistry is retained in the cyclopropane product. The mechanism for addition of a carbene to an alkene is a concerted +1cycloaddition (see figure). Carbenes derived from chloroform or bromoform can be used to add CX2 to an alkene to give a dihalocyclopropane, while the Simmons–Smith reagent adds CH2.Robert B. Grossman ''The Art of Writing Reasonable Organic Reaction Mechanisms'' Springer, 2003. Interaction of the filled carbene orbital with the alkene π system creates a four-electron system and favors a non-linear approach. It is also favorable to mix the carbene empty ''p'' orbital with the filled alkene π orbital. Favorable mixing occurs through a non-linear approach (see figure at right). However, while theory clearly favors a non-linear approach, there are no obvious experimental implications for a linear vs. non-linear approach.


References

{{Organic reactions Pericyclic reactions Cycloadditions Cheletropic reactions