HOME

TheInfoList



OR:

In mathematics, a characteristic class is a way of associating to each
principal bundle In mathematics, a principal bundle is a mathematical object that formalizes some of the essential features of the Cartesian product X \times G of a space X with a group G. In the same way as with the Cartesian product, a principal bundle P is equi ...
of ''X'' a
cohomology In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewe ...
class of ''X''. The cohomology class measures the extent the bundle is "twisted" and whether it possesses
section Section, Sectioning or Sectioned may refer to: Arts, entertainment and media * Section (music), a complete, but not independent, musical idea * Section (typography), a subdivision, especially of a chapter, in books and documents ** Section sig ...
s. Characteristic classes are global invariants that measure the deviation of a
local Local may refer to: Geography and transportation * Local (train), a train serving local traffic demand * Local, Missouri, a community in the United States * Local government, a form of public administration, usually the lowest tier of administrat ...
product structure from a global product structure. They are one of the unifying geometric concepts in
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify ...
, differential geometry, and algebraic geometry. The notion of characteristic class arose in 1935 in the work of
Eduard Stiefel Eduard L. Stiefel (21 April 1909 – 25 November 1978) was a Swiss mathematician. Together with Cornelius Lanczos and Magnus Hestenes, he invented the conjugate gradient method, and gave what is now understood to be a partial construction of the ...
and
Hassler Whitney Hassler Whitney (March 23, 1907 – May 10, 1989) was an American mathematician. He was one of the founders of singularity theory, and did foundational work in manifolds, embeddings, immersions, characteristic classes, and geometric integratio ...
about vector fields on manifolds.


Definition

Let ''G'' be a
topological group In mathematics, topological groups are logically the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two st ...
, and for a topological space X, write b_G(X) for the set of
isomorphism class In mathematics, an isomorphism class is a collection of mathematical objects isomorphic to each other. Isomorphism classes are often defined as the exact identity of the elements of the set is considered irrelevant, and the properties of the stru ...
es of principal ''G''-bundles over X. This b_G is a
contravariant functor In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and ...
from Top (the
category Category, plural categories, may refer to: Philosophy and general uses *Categorization, categories in cognitive science, information science and generally * Category of being * ''Categories'' (Aristotle) * Category (Kant) * Categories (Peirce) ...
of topological spaces and continuous functions) to Set (the category of sets and
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-oriente ...
s), sending a map f\colon X\to Y to the
pullback In mathematics, a pullback is either of two different, but related processes: precomposition and fiber-product. Its dual is a pushforward. Precomposition Precomposition with a function probably provides the most elementary notion of pullback: i ...
operation f^*\colon b_G(Y)\to b_G(X). A characteristic class ''c'' of principal ''G''-bundles is then a
natural transformation In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natur ...
from b_G to a cohomology functor H^*, regarded also as a functor to Set. In other words, a characteristic class associates to each principal ''G''-bundle P\to X in b_G(X) an element ''c''(''P'') in ''H''*(''X'') such that, if ''f'' : ''Y'' → ''X'' is a continuous map, then ''c''(''f''*''P'') = ''f''*''c''(''P''). On the left is the class of the pullback of ''P'' to ''Y''; on the right is the image of the class of ''P'' under the induced map in cohomology.


Characteristic numbers

Characteristic classes are elements of cohomology groups; one can obtain integers from characteristic classes, called characteristic numbers. Some important examples of characteristic numbers are Stiefel–Whitney numbers, Chern numbers, Pontryagin numbers, and the Euler characteristic. Given an oriented manifold ''M'' of dimension ''n'' with
fundamental class In mathematics, the fundamental class is a homology class 'M''associated to a connected orientable compact manifold of dimension ''n'', which corresponds to the generator of the homology group H_n(M,\partial M;\mathbf)\cong\mathbf . The fundam ...
\in H_n(M), and a ''G''-bundle with characteristic classes c_1,\dots,c_k, one can pair a product of characteristic classes of total degree ''n'' with the fundamental class. The number of distinct characteristic numbers is the number of
monomial In mathematics, a monomial is, roughly speaking, a polynomial which has only one term. Two definitions of a monomial may be encountered: # A monomial, also called power product, is a product of powers of variables with nonnegative integer expone ...
s of degree ''n'' in the characteristic classes, or equivalently the partitions of ''n'' into \mbox\,c_i. Formally, given i_1,\dots,i_l such that \sum \mbox\,c_ = n, the corresponding characteristic number is: :c_\smile c_\smile \dots \smile c_( where \smile denotes the
cup product In mathematics, specifically in algebraic topology, the cup product is a method of adjoining two cocycles of degree ''p'' and ''q'' to form a composite cocycle of degree ''p'' + ''q''. This defines an associative (and distributive) graded commutati ...
of cohomology classes. These are notated variously as either the product of characteristic classes, such as c_1^2, or by some alternative notation, such as P_ for the
Pontryagin number In mathematics, the Pontryagin classes, named after Lev Pontryagin, are certain characteristic classes of real vector bundles. The Pontryagin classes lie in cohomology groups with degrees a multiple of four. Definition Given a real vector bundle ...
corresponding to p_1^2, or \chi for the Euler characteristic. From the point of view of de Rham cohomology, one can take differential forms representing the characteristic classes,By Chern–Weil theory, these are polynomials in the curvature; by Hodge theory, one can take harmonic form. take a wedge product so that one obtains a top dimensional form, then integrate over the manifold; this is analogous to taking the product in cohomology and pairing with the fundamental class. This also works for non-orientable manifolds, which have a \mathbf/2\mathbf-orientation, in which case one obtains \mathbf/2\mathbf-valued characteristic numbers, such as the Stiefel-Whitney numbers. Characteristic numbers solve the oriented and unoriented bordism questions: two manifolds are (respectively oriented or unoriented) cobordant if and only if their characteristic numbers are equal.


Motivation

Characteristic classes are phenomena of
cohomology theory In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed ...
in an essential way — they are contravariant constructions, in the way that a
section Section, Sectioning or Sectioned may refer to: Arts, entertainment and media * Section (music), a complete, but not independent, musical idea * Section (typography), a subdivision, especially of a chapter, in books and documents ** Section sig ...
is a kind of function ''on'' a space, and to lead to a contradiction from the existence of a section we do need that variance. In fact cohomology theory grew up after homology and homotopy theory, which are both covariant theories based on mapping ''into'' a space; and characteristic class theory in its infancy in the 1930s (as part of
obstruction theory In mathematics, obstruction theory is a name given to two different mathematical theories, both of which yield cohomological invariants. In the original work of Stiefel and Whitney, characteristic classes were defined as obstructions to the ex ...
) was one major reason why a 'dual' theory to homology was sought. The characteristic class approach to curvature invariants was a particular reason to make a theory, to prove a general
Gauss–Bonnet theorem In the mathematical field of differential geometry, the Gauss–Bonnet theorem (or Gauss–Bonnet formula) is a fundamental formula which links the curvature of a surface to its underlying topology. In the simplest application, the case of a t ...
. When the theory was put on an organised basis around 1950 (with the definitions reduced to homotopy theory) it became clear that the most fundamental characteristic classes known at that time (the
Stiefel–Whitney class In mathematics, in particular in algebraic topology and differential geometry, the Stiefel–Whitney classes are a set of topological invariants of a real vector bundle that describe the obstructions to constructing everywhere independent sets of ...
, the
Chern class In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since found applications in physics, Calabi–Yau ...
, and the
Pontryagin class In mathematics, the Pontryagin classes, named after Lev Pontryagin, are certain characteristic classes of real vector bundles. The Pontryagin classes lie in cohomology groups with degrees a multiple of four. Definition Given a real vector bundl ...
es) were reflections of the classical linear groups and their
maximal torus In the mathematical theory of compact Lie groups a special role is played by torus subgroups, in particular by the maximal torus subgroups. A torus in a compact Lie group ''G'' is a compact, connected, abelian Lie subgroup of ''G'' (and therefor ...
structure. What is more, the Chern class itself was not so new, having been reflected in the
Schubert calculus In mathematics, Schubert calculus is a branch of algebraic geometry introduced in the nineteenth century by Hermann Schubert, in order to solve various counting problems of projective geometry (part of enumerative geometry). It was a precursor of ...
on
Grassmannian In mathematics, the Grassmannian is a space that parameterizes all -dimensional linear subspaces of the -dimensional vector space . For example, the Grassmannian is the space of lines through the origin in , so it is the same as the projective ...
s, and the work of the
Italian school of algebraic geometry In relation to the history of mathematics, the Italian school of algebraic geometry refers to mathematicians and their work in birational geometry, particularly on algebraic surfaces, centered around Rome roughly from 1885 to 1935. There were 30 ...
. On the other hand there was now a framework which produced families of classes, whenever there was a
vector bundle In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to every p ...
involved. The prime mechanism then appeared to be this: Given a space ''X'' carrying a vector bundle, that implied in the
homotopy category In mathematics, the homotopy category is a category built from the category of topological spaces which in a sense identifies two spaces that have the same shape. The phrase is in fact used for two different (but related) categories, as discussed be ...
a mapping from ''X'' to a
classifying space In mathematics, specifically in homotopy theory, a classifying space ''BG'' of a topological group ''G'' is the quotient of a weakly contractible space ''EG'' (i.e. a topological space all of whose homotopy groups are trivial) by a proper free ac ...
''BG'', for the relevant linear group ''G''. For the homotopy theory the relevant information is carried by compact subgroups such as the orthogonal groups and
unitary group In mathematics, the unitary group of degree ''n'', denoted U(''n''), is the group of unitary matrices, with the group operation of matrix multiplication. The unitary group is a subgroup of the general linear group . Hyperorthogonal group is ...
s of ''G''. Once the cohomology H^*(BG) was calculated, once and for all, the contravariance property of cohomology meant that characteristic classes for the bundle would be defined in H^*(X) in the same dimensions. For example the
Chern class In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since found applications in physics, Calabi–Yau ...
is really one class with graded components in each even dimension. This is still the classic explanation, though in a given geometric theory it is profitable to take extra structure into account. When cohomology became 'extraordinary' with the arrival of
K-theory In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometr ...
and
cobordism theory In mathematics, cobordism is a fundamental equivalence relation on the class of compact manifolds of the same dimension, set up using the concept of the boundary (French '' bord'', giving ''cobordism'') of a manifold. Two manifolds of the same ...
from 1955 onwards, it was really only necessary to change the letter ''H'' everywhere to say what the characteristic classes were. Characteristic classes were later found for
foliation In mathematics (differential geometry), a foliation is an equivalence relation on an ''n''-manifold, the equivalence classes being connected, injectively immersed submanifolds, all of the same dimension ''p'', modeled on the decomposition of ...
s of manifolds; they have (in a modified sense, for foliations with some allowed singularities) a classifying space theory in
homotopy In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from grc, ὁμός "same, similar" and "place") if one can be "continuously deformed" into the other, such a defor ...
theory. In later work after the ''rapprochement'' of mathematics and
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
, new characteristic classes were found by
Simon Donaldson Sir Simon Kirwan Donaldson (born 20 August 1957) is an English mathematician known for his work on the topology of smooth (differentiable) four-dimensional manifolds, Donaldson–Thomas theory, and his contributions to Kähler geometry. H ...
and Dieter Kotschick in the
instanton An instanton (or pseudoparticle) is a notion appearing in theoretical and mathematical physics. An instanton is a classical solution to equations of motion with a finite, non-zero action, either in quantum mechanics or in quantum field theory. Mo ...
theory. The work and point of view of Chern have also proved important: see Chern–Simons theory.


Stability

In the language of stable homotopy theory, the
Chern class In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since found applications in physics, Calabi–Yau ...
,
Stiefel–Whitney class In mathematics, in particular in algebraic topology and differential geometry, the Stiefel–Whitney classes are a set of topological invariants of a real vector bundle that describe the obstructions to constructing everywhere independent sets of ...
, and
Pontryagin class In mathematics, the Pontryagin classes, named after Lev Pontryagin, are certain characteristic classes of real vector bundles. The Pontryagin classes lie in cohomology groups with degrees a multiple of four. Definition Given a real vector bundl ...
are ''stable'', while the
Euler class In mathematics, specifically in algebraic topology, the Euler class is a characteristic class of oriented, real vector bundles. Like other characteristic classes, it measures how "twisted" the vector bundle is. In the case of the tangent bundle o ...
is ''unstable''. Concretely, a stable class is one that does not change when one adds a trivial bundle: c(V \oplus 1) = c(V). More abstractly, it means that the cohomology class in the
classifying space In mathematics, specifically in homotopy theory, a classifying space ''BG'' of a topological group ''G'' is the quotient of a weakly contractible space ''EG'' (i.e. a topological space all of whose homotopy groups are trivial) by a proper free ac ...
for BG(n) pulls back from the cohomology class in BG(n+1) under the inclusion BG(n) \to BG(n+1) (which corresponds to the inclusion \mathbf^n \to \mathbf^ and similar). Equivalently, all finite characteristic classes pull back from a stable class in BG. This is not the case for the Euler class, as detailed there, not least because the Euler class of a ''k''-dimensional bundle lives in H^k(X) (hence pulls back from H^k(BO(k)), so it can’t pull back from a class in H^, as the dimensions differ.


See also

*
Segre class In mathematics, the Segre class is a characteristic class used in the study of cones, a generalization of vector bundles. For vector bundles the total Segre class is inverse to the total Chern class, and thus provides equivalent information; the ad ...
* Euler characteristic *
Chern class In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since found applications in physics, Calabi–Yau ...


Notes


References

* . *:The appendix of this book: "Geometry of characteristic classes" is a very neat and profound introduction to the development of the ideas of characteristic classes. * * * {{DEFAULTSORT:Characteristic Class