Chapman–Robbins Bound
   HOME

TheInfoList



OR:

In
statistics Statistics (from German language, German: ''wikt:Statistik#German, Statistik'', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of ...
, the Chapman–Robbins bound or Hammersley–Chapman–Robbins bound is a lower bound on the variance of estimators of a deterministic parameter. It is a generalization of the Cramér–Rao bound; compared to the Cramér–Rao bound, it is both tighter and applicable to a wider range of problems. However, it is usually more difficult to compute. The bound was independently discovered by John Hammersley in 1950, and by Douglas Chapman and Herbert Robbins in 1951.


Statement

Let \Theta be the set of parameters for a family of probability distributions \ on \Omega. For any two \theta, \theta' \in \Theta, let \chi^2(\mu_; \mu_) be the \chi^2-divergence from \mu_ to \mu_. Then: A generalization to the multivariable case is:


Proof

By the variational representation of chi-squared divergence:\chi^2(P; Q) = \sup_g \frac Plug in g = \hat g, P = \mu_, Q = \mu_\theta, to obtain: \chi^2(\mu_; \mu_\theta) \geq \fracSwitch the denominator and the left side and take supremum over \theta' to obtain the single-variate case. For the multivariate case, we define h = \sum_^m v_i \hat g_i for any v\neq 0 \in \R^m. Then plug in g = h in the variational representation to obtain: \chi^2(\mu_; \mu_\theta) \geq \frac = \frac Take supremum over v\neq 0 \in\R^m , using the linear algebra fact that \sup_ \frac = w^T M^w , we obtain the multivariate case.


Relation to Cramér–Rao bound

Usually, \Omega = \mathcal X^n is the sample space of n independent draws of a \mathcal X-valued random variable X with distribution \lambda_\theta from a by \theta \in \Theta \subseteq \mathbb R^m parameterized family of probability distributions, \mu_\theta = \lambda_\theta^ is its n-fold product measure, and \hat g : \mathcal X^n \to \Theta is an estimator of \theta. Then, for m=1, the expression inside the supremum in the Chapman–Robbins bound converges to the Cramér–Rao bound of \hat g when \theta' \to \theta, assuming the regularity conditions of the Cramér–Rao bound hold. This implies that, when both bounds exist, the Chapman–Robbins version is always at least as tight as the Cramér–Rao bound; in many cases, it is substantially tighter. The Chapman–Robbins bound also holds under much weaker regularity conditions. For example, no assumption is made regarding differentiability of the probability density function ''p''(''x''; ''θ'') of \lambda_\theta. When ''p''(''x''; ''θ'') is non-differentiable, the Fisher information is not defined, and hence the Cramér–Rao bound does not exist.


See also

* Cramér–Rao bound *
Estimation theory Estimation theory is a branch of statistics that deals with estimating the values of parameters based on measured empirical data that has a random component. The parameters describe an underlying physical setting in such a way that their valu ...


References


Further reading

* {{DEFAULTSORT:Chapman-Robbins bound Statistical inequalities Estimation theory