Cerebral Volume
   HOME

TheInfoList



OR:

The size of the brain is a frequent topic of study within the fields of anatomy, biological anthropology, animal science and evolution. Brain size is sometimes measured by weight and sometimes by volume (via MRI scans or by skull volume).
Neuroimaging intelligence testing Neuroimaging intelligence testing concerns the use of neuroimaging techniques to evaluate human intelligence. Neuroimaging technology has advanced such that scientists hope to use neuroimaging increasingly for investigations of brain function relat ...
can be used to study the volumetric measurements of the brain. Regarding "intelligence testing", a question that has been frequently investigated is the relation of brain size to intelligence. This question is quite controversial and will be addressed further in the section on intelligence. The measure of brain size and cranial capacity is not just important to humans, but to all mammals.


Humans

In humans, the right cerebral hemisphere is typically larger than the left, whereas the cerebellar hemispheres are typically closer in size. The adult human brain weighs on average about . In men the average weight is about 1370 g and in women about 1200 g. The volume is around 1260  cm3 in men and 1130  cm3 in women, although there is substantial individual variation. Yet another study argued that adult human brain weight is 1,300-1,400g for adult humans and 350-400g for newborn humans. There is a range of volume and weights, and not just one number that one can definitively rely on, as with body mass. It is also important to note that variation between individuals is not as important as variation within species, as overall the differences are much smaller. The mechanisms of interspecific and intraspecific variation also differ.


Variation and evolution

From early primates to hominids and finally to ''Homo sapiens'', the brain is progressively larger, with exception of extinct Neanderthals whose brain size exceeded modern Homo sapiens. The volume of the human brain has increased as humans have evolved (see Homininae), starting from about 600 cm3 in ''
Homo habilis ''Homo habilis'' ("handy man") is an extinct species of archaic human from the Early Pleistocene of East and South Africa about 2.31 million years ago to 1.65 million years ago (mya). Upon species description in 1964, ''H. habilis'' was highly ...
'' up to 1680 cm3 in Homo neanderthalensis, which was the hominid with the biggest brain size. The increase in brain size stopped with neanderthals. Since then, the average brain size has been shrinking over the past 28,000 years. One study suggests that this decrease in brain size "was surprisingly recent, occurring in the last 3,000 years", not the past 28,000 years. The cranial capacity has decreased from around 1,550 cm3 to around 1,440 cm3 in males while the female cranial capacity has shrunk from around 1,500 cm3 to around 1,240 cm3. Other sources with bigger sample sizes of modern Homo sapiens find approximately the same cranial capacity for males but a higher cranial capacity of around 1330 cm3 in females. However, a study that reanalyzed data used in the study that suggested a decrease in brain size in the last 3,000 years, indicates that brain size did not decrease over this timespan and neither within 300 ka as suggested by other studies. It concluded that "the samples need to be specific enough to test the hypothesis across different times and populations".


''H. floresiensis small brain

'' Homo floresiensis'' is a hominin from the island of
Flores Flores is one of the Lesser Sunda Islands, a group of islands in the eastern half of Indonesia. Including the Komodo Islands off its west coast (but excluding the Solor Archipelago to the east of Flores), the land area is 15,530.58 km2, and th ...
in Indonesia with fossils dating from 60,000-100,000 years ago. Despite its relatively derived position in the hominin phylogeny,
CT imaging A computed tomography scan (CT scan; formerly called computed axial tomography scan or CAT scan) is a medical imaging technique used to obtain detailed internal images of the body. The personnel that perform CT scans are called radiographers ...
of its skull reveals that its brain volume was only 417 cm3, less than that of even ''
Homo habilis ''Homo habilis'' ("handy man") is an extinct species of archaic human from the Early Pleistocene of East and South Africa about 2.31 million years ago to 1.65 million years ago (mya). Upon species description in 1964, ''H. habilis'' was highly ...
'', which is believed to have gone extinct far earlier (around 1.65 million years ago.). The reason for this regression in brain size is believed to be '' island syndrome'' in which the brains of insular species become smaller due to reduced predation risk. This is beneficial as it reduces the basal metabolic rate without significant increases in predation risk.


Genetic causes of recent decrease

In recent years, experiments have been conducted drawing conclusions to brain size in association to the gene mutation that causes microcephaly, a neural developmental disorder that affects cerebral cortical volume.


Sociocultural causes of suggested recent decrease

A 2021 study proposed that the recent decrease in brain size in the last 3,000 years has resulted from externalization of knowledge and group decision-making, partly via the advent of social systems of distributed cognition, social organization, division of labor and sharing of information. A 2022 study, that reanalyzed data used in the study, refutes their conclusion that the brain size did decrease at all during the last 3,000 years.


Hydrocephalus

Exceptional cases of hydrocephalus, such as what was reported by John Lorber in 1980 and by a study with rats, suggest that relatively high levels of intelligence and relatively normal functioning are possible even with very small brains. It is unclear what conclusions could be drawn from such reports – such as about brain capacities, redundancies, mechanics and size requirements.


Biogeographic variation

Efforts to find racial or ethnic variation in brain size are generally considered to be a pseudoscientific endeavor and have traditionally been tied to scientific racism and attempts to demonstrate a racial intellectual hierarchy.Gould, S. J. (1981). ''The Mismeasure of Man''. New York: W. W. Norton & Company. The majority of efforts to demonstrate this have relied on indirect data that assessed skull measurements as opposed to direct brain observations. These are considered scientifically discredited. A large-scale 1984 survey of global variation in skulls has concluded that variation in skull and head sizes is unrelated to race, but rather climatic heat preservation, stating "We find little support for the use of brain size in taxonomic assessment (other than with paleontological extremes over time). Racial taxonomies which include cranial capacity, head shape, or any other trait influenced by climate confound ecotypic and phyletic causes. For Pleistocene hominids, we doubt that the volume of the braincase is any more taxonomically 'valuable' than any other trait."


Sex

A human baby's brain at birth averages 369 cm3 and increases, during the first year of life, to about 961 cm3, after which the growth rate declines. Brain volume peaks at the teenage years, and after the age of 40 it begins declining at 5% per decade, speeding up around 70. Average adult male brain weight is , while an adult female has an average brain weight of . (This does not take into account neuron density nor brain-to-body mass ratio; men on average also have larger bodies than women.) Males have been found to have on average greater cerebral, cerebellar and cerebral cortical lobar volumes, except possibly left parietal. The gender differences in size vary by more specific brain regions. Studies have tended to indicate that men have a relatively larger amygdala and hypothalamus, while women have a relatively larger caudate and hippocampi. When covaried for
intracranial volume The cranial cavity, also known as intracranial space, is the space within the skull that accommodates the brain. The skull minus the mandible is called the ''cranium''. The cavity is formed by eight cranial bones known as the neurocranium that ...
, height, and weight, Kelly (2007) indicates women have a higher percentage of gray matter, whereas men have a higher percentage of white matter and cerebrospinal fluid. There is high variability between individuals in these studies, however. However, Yaki (2011) found no
statistically significant In statistical hypothesis testing, a result has statistical significance when it is very unlikely to have occurred given the null hypothesis (simply by chance alone). More precisely, a study's defined significance level, denoted by \alpha, is the p ...
gender differences in the gray matter ratio for most ages (grouped by decade), except in the 3rd and 6th decades of life in the sample of 758 women and 702 men aged 20–69. The average male in their third decade (ages 20–29) had a significantly higher gray matter ratio than the average female of the same age group. In contrast, among subjects in their sixth decade, the average woman had a significantly larger gray matter ratio, though no meaningful difference was found among those in their 7th decade of life. Total cerebral and gray matter volumes peak during the ages from 10–20 years (earlier in girls than boys), whereas white matter and ventricular volumes increase. There is a general pattern in neural development of childhood peaks followed by adolescent declines (e.g. synaptic pruning). Consistent with adult findings, average cerebral volume is approximately 10% larger in boys than girls. However, such differences should not be interpreted as imparting any sort of functional advantage or disadvantage; gross structural measures may not reflect functionally relevant factors such as neuronal connectivity and receptor density, and of note is the high variability of brain size even in narrowly defined groups, for example children at the same age may have as much as a 50% differences in total brain volume. Young girls have on average relative larger hippocampal volume, whereas the amygdalae are larger in boys. However, multiple studies have found a higher synaptic density in males: a 2008 study reported that men had a significantly higher average synaptic density of 12.9 × 108 per cubic millimeter, whereas in women it was 8.6 × 108 per cubic millimeter, a 33% difference. Other studies have found an average of 4 billion more neurons in the male brain, corroborating this difference, as each neuron has on average 7,000 synaptic connections to other neurons. Significant dynamic changes in brain structure take place through adulthood and aging, with substantial variation between individuals. In later decades, men show greater volume loss in whole brain volume and in the frontal lobes, and temporal lobes, whereas in women there is increased volume loss in the hippocampi and parietal lobes. Men show a steeper decline in global gray matter volume, although in both sexes it varies by region with some areas exhibiting little or no age effect. Overall white matter volume does not appear to decline with age, although there is variation between brain regions.


Genetic contribution

Adult twin studies have indicated high
heritability Heritability is a statistic used in the fields of breeding and genetics that estimates the degree of ''variation'' in a phenotypic trait in a population that is due to genetic variation between individuals in that population. The concept of h ...
estimates for overall brain size in adulthood (between 66% and 97%). The effect varies regionally within the brain, however, with high heritabilities of frontal lobe volumes (90-95%), moderate estimates in the hippocampi (40-69%), and environmental factors influencing several medial brain areas. In addition, lateral ventricle volume appears to be mainly explained by environmental factors, suggesting such factors also play a role in the surrounding brain tissue. Genes may cause the association between brain structure and cognitive functions, or the latter may influence the former during life. A number of candidate genes have been identified or suggested, but they await replication.


Intelligence

Studies demonstrate a correlation between brain size and intelligence, larger brains predicting higher intelligence. It is however not clear if the correlation is causal. The majority of MRI studies report moderate correlations around 0.3 to 0.4 between brain volume and intelligence. The most consistent associations are observed within the frontal, temporal, and parietal lobes, the hippocampus, and the cerebellum, but only account for a relatively small amount of variance in IQ, which suggests that while brain size may be related to human intelligence, other factors also play a role. In addition, brain volumes do not correlate strongly with other and more specific cognitive measures. In men, IQ correlates more with gray matter volume in the frontal lobe and parietal lobe, which is roughly involved in sensory integration and attention, whereas in women it correlates with gray matter volume in the frontal lobe and Broca's area, which is involved in language. Research measuring brain volume, P300 auditory evoked potentials, and intelligence shows a dissociation, such that both brain volume and speed of P300 correlate with measured aspects of intelligence, but not with each other. Evidence conflicts on the question of whether brain size variation also predicts intelligence between siblings, as some studies find moderate correlations and others find none. A recent review by Nesbitt, Flynn et al. (2012) point out that crude brain size is unlikely to be a good measure of IQ, for example brain size also differs between men and women, but without well documented differences in IQ. A discovery in recent years is that the structure of the adult human brain changes when a new cognitive or motor skill, including vocabulary, is learned. Structural neuroplasticity (increased gray matter volume) has been demonstrated in adults after three months of training in a visual-motor skill, as the qualitative change (i.e. learning of a new task) appear more critical for the brain to change its structure than continued training of an already-learned task. Such changes (e.g. revising for medical exams) have been shown to last for at least 3 months without further practicing; other examples include learning novel speech sounds, musical ability, navigation skills and learning to read mirror-reflected words.


Other animals

The largest brains are those of
sperm whale The sperm whale or cachalot (''Physeter macrocephalus'') is the largest of the toothed whales and the largest toothed predator. It is the only living member of the genus ''Physeter'' and one of three extant species in the sperm whale famil ...
s, weighing about . An elephant's brain weighs just over , a
bottlenose dolphin Bottlenose dolphins are aquatic mammals in the genus ''Tursiops.'' They are common, cosmopolitan members of the family Delphinidae, the family of oceanic dolphins. Molecular studies show the genus definitively contains two species: the common ...
's , whereas a human brain is around . Brain size tends to vary according to
body size Body may refer to: In science * Physical body, an object in physics that represents a large amount, has mass or takes up space * Body (biology), the physical material of an organism * Body plan, the physical features shared by a group of anima ...
. The relationship is not proportional, though: the brain-to-body mass ratio varies. The largest ratio found is in the shrew. Averaging brain weight across all orders of mammals, it follows a
power law In statistics, a power law is a Function (mathematics), functional relationship between two quantities, where a Relative change and difference, relative change in one quantity results in a proportional relative change in the other quantity, inde ...
, with an
exponent Exponentiation is a mathematical operation, written as , involving two numbers, the '' base'' and the ''exponent'' or ''power'' , and pronounced as " (raised) to the (power of) ". When is a positive integer, exponentiation corresponds to re ...
of about 0.75. There are good reasons to expect a power law: for example, the body-size to body-length relationship follows a power law with an exponent of 0.33, and the body-size to surface-area relationship follows a power law with an exponent of 0.67. The explanation for an exponent of 0.75 is not obvious; however, it is worth noting that several physiological variables appear to be related to body size by approximately the same exponent—for example, the basal metabolic rate. This power law formula applies to the "average" brain of mammals taken as a whole, but each family (cats, rodents, primates, etc.) departs from it to some degree, in a way that generally reflects the overall "sophistication" of
behavior Behavior (American English) or behaviour (British English) is the range of actions and mannerisms made by individuals, organisms, systems or artificial entities in some environment. These systems can include other systems or organisms as wel ...
.
Primates Primates are a diverse order of mammals. They are divided into the strepsirrhines, which include the lemurs, galagos, and lorisids, and the haplorhines, which include the tarsiers and the simians (monkeys and apes, the latter including huma ...
, for a given body size, have brains 5 to 10 times as large as the formula predicts. Predators tend to have relatively larger brains than the animals they prey on; placental mammals (the great majority) have relatively larger brains than
marsupials Marsupials are any members of the mammalian infraclass Marsupialia. All extant marsupials are endemic to Australasia, Wallacea and the Americas. A distinctive characteristic common to most of these species is that the young are carried in a po ...
such as the opossum. A standard measure for assessing an animal's brain size compared to what would be expected from its body size is known as the encephalization quotient. The encephalization quotient for humans is between 7.4-7.8. When the mammalian brain increases in size, not all parts increase at the same rate. In particular, the larger the brain of a species, the greater the fraction taken up by the cortex. Thus, in the species with the largest brains, most of their volume is filled with cortex: this applies not only to humans, but also to animals such as dolphins, whales or elephants. The evolution of '' Homo sapiens'' over the past two million years has been marked by a steady increase in brain size, but much of it can be accounted for by corresponding increases in body size. There are, however, many departures from the trend that are difficult to explain in a systematic way: in particular, the appearance of modern man about 100,000 years ago was marked by a decrease in body size at the same time as an increase in brain size. Even so, it is noteworthy that Neanderthals, which became extinct about 40,000 years ago, had larger brains than modern ''Homo sapiens''. Not all investigators are happy with the amount of attention that has been paid to brain size. Roth and Dicke, for example, have argued that factors other than size are more highly correlated with intelligence, such as the number of cortical neurons and the speed of their connections. Moreover, they point out that intelligence depends not just on the amount of brain tissue, but on the details of how it is structured. It is also well known that crows,
raven A raven is any of several larger-bodied bird species of the genus ''Corvus''. These species do not form a single taxonomic group within the genus. There is no consistent distinction between "crows" and "ravens", common names which are assigned t ...
s, and grey parrots are quite intelligent even though they have small brains. While humans have the largest encephalization quotient of extant animals, it is not out of line for a primate. Some other anatomical trends are correlated in the human evolutionary path with brain size: the
basicranium The base of skull, also known as the cranial base or the cranial floor, is the most inferior area of the skull. It is composed of the endocranium and the lower parts of the calvaria. Structure Structures found at the base of the skull are for ...
becomes more flexed with increasing brain size relative to basicranial length.


Cranial capacity

Cranial capacity is a measure of the volume of the interior of the skull of those vertebrates who have a brain. The most commonly used unit of measure is the cubic centimetre (cm3). The volume of the cranium is used as a rough indicator of the size of the brain, and this in turn is used as a rough indicator of the potential intelligence of the organism. Cranial capacity is often tested by filling the cranial cavity with glass beads and measuring their volume, or by
CT scan A computed tomography scan (CT scan; formerly called computed axial tomography scan or CAT scan) is a medical imaging technique used to obtain detailed internal images of the body. The personnel that perform CT scans are called radiographers ...
imaging. A more accurate way of measuring cranial capacity, is to make an endocranial cast and measure the amount of water the cast displaces. In the past there have been dozens of studies done to estimate cranial capacity on skulls. Most of these studies have been done on dry skull using linear dimensions, packing methods or occasionally radiological methods. Knowledge of the volume of the cranial cavity can be important information for the study of different populations with various differences like geographical, racial, or ethnic origin. Other things can also affect cranial capacity such as nutrition. It is also used to study correlating between cranial capacity with other cranial measurements and in comparing skulls from different beings. It is commonly used to study abnormalities of cranial size and shape or aspects of growth and development of the volume of the brain. Cranial capacity is an indirect approach to test the size of the brain. A few studies on cranial capacity have been done on living beings through linear dimensions. However, larger cranial capacity is not always indicative of a more intelligent organism, since larger capacities are required for controlling a larger body, or in many cases are an adaptive feature for life in a colder environment. For instance, among modern ''Homo sapiens'', northern populations have a 20% larger visual cortex than those in the southern latitude populations, and this potentially explains the population differences in human brain size (and roughly cranial capacity). Neurological functions are determined more by the organization of the brain rather than the volume. Individual variability is also important when considering cranial capacity, for example the average Neanderthal cranial capacity for females was 1300 cm3 and 1600 cm3 for males. Neanderthals had larger eyes and bodies relative to their height, thus a disproportionately large area of their brain was dedicated to somatic and visual processing, functions not normally associated with intelligence. When these areas were adjusted to match anatomically modern human proportions it was found Neanderthals had brains 15-22% smaller than in
anatomically-modern human Early modern human (EMH) or anatomically modern human (AMH) are terms used to distinguish ''Homo sapiens'' (the only extant Hominina species) that are anatomically consistent with the range of phenotypes seen in contemporary humans from extin ...
s. When the neanderthal version of the NOVA1 gene is inserted into stem cells it creates neurons with fewer synapses than stem cells containing the human version. Parts of a cranium found in China in the 1970s show that the young man had a cranial capacity of around 1700cm at least 160,000 years ago. This is greater than the average of modern humans. In an attempt to use cranial capacity as an objective indicator of brain size, the encephalization quotient (EQ) was developed in 1973 by Harry Jerison. It compares the size of the brain of the specimen to the expected brain size of animals with roughly the same weight. This way a more objective judgement can be made on the cranial capacity of an individual animal. A large scientific collection of brain endocasts and measurements of cranial capacity has been compiled by Holloway. Examples of cranial capacity Apes * Orangutans: *
Chimpanzee The chimpanzee (''Pan troglodytes''), also known as simply the chimp, is a species of great ape native to the forest and savannah of tropical Africa. It has four confirmed subspecies and a fifth proposed subspecies. When its close relative th ...
s: * Gorillas: Hominids *
Anatomically-modern human Early modern human (EMH) or anatomically modern human (AMH) are terms used to distinguish ''Homo sapiens'' (the only extant Hominina species) that are anatomically consistent with the range of phenotypes seen in contemporary humans from extin ...
: average 1473cm * Neanderthals: 1500-, 1740cm *
Xujiayao 6 Xujiayao, located in the Nihewan Basin in China, is an early Late Pleistocene paleoanthropological site famous for its archaic hominin fossils. Location Xujiayao is located on the west bank of the Liyi River, a tributary of the Sanggan River. Xuj ...
(160 to 200 ka ago): ca. 1700cm * ''
Homo erectus ''Homo erectus'' (; meaning "upright man") is an extinct species of archaic human from the Pleistocene, with its earliest occurrence about 2 million years ago. Several human species, such as '' H. heidelbergensis'' and '' H. antecessor' ...
''; 850 – 1100 cm3 * '' Australopithecus anamensis''; 365–370 cm3 * '' Australopithecus afarensis''; 438 cm3 * ''
Australopithecus africanus ''Australopithecus africanus'' is an extinct species of australopithecine which lived between about 3.3 and 2.1 million years ago in the Late Pliocene to Early Pleistocene of South Africa. The species has been recovered from Taung, Sterkfonte ...
'' 452 cm3 * ''
Paranthropus boisei ''Paranthropus boisei'' is a species of australopithecine from the Early Pleistocene of East Africa about 2.5 to 1.15 million years ago. The holotype specimen, OH 5, was discovered by palaeoanthropologist Mary Leakey in 1959, and described by h ...
'' 521 cm3 * ''
Paranthropus robustus ''Paranthropus robustus'' is a species of robustness (morphology), robust australopithecine from the Early Pleistocene, Early and possibly Middle Pleistocene, Middle Pleistocene of the Cradle of Humankind, South Africa, about 2.27 to 0.87 (or, mo ...
'' 530 cm3


See also

* Brain-to-body mass ratio * Encephalization quotient * List of animals by number of neurons * Craniometry — includes historical discussion * Neuroscience and intelligence * Human brain


References


Further reading

* {{animal cognition Neuroscience