HOME

TheInfoList



OR:

The Cenomanian-Turonian boundary event, also known as the Cenomanian-Turonian extinction, Cenomanian-Turonian oceanic anoxic event ( OAE 2), and referred to also as the Bonarelli event, was one of two anoxic
extinction event An extinction event (also known as a mass extinction or biotic crisis) is a widespread and rapid decrease in the biodiversity on Earth. Such an event is identified by a sharp change in the diversity and abundance of multicellular organisms. I ...
s in the Cretaceous period. (The other being the earlier Selli event, or OAE 1a, in the
Aptian The Aptian is an age in the geologic timescale or a stage in the stratigraphic column. It is a subdivision of the Early or Lower Cretaceous Epoch or Series and encompasses the time from 121.4 ± 1.0 Ma to 113.0 ± 1.0 Ma (million years ago), a ...
.) Selby et al. in 2009 concluded the OAE 2 occurred approximately 91.5 ± 8.6 Ma, though estimates published by Leckie et al. (2002) are given as 93–94 Ma. The Cenomanian-Turonian boundary has been refined in 2012 to 93.9 ± 0.15 Ma There was a large carbon disturbance during this time period. However, apart from the carbon cycle disturbance, there were also large disturbances in the oxygen and sulfur cycles of the ocean.


Background

The Cenomanian and Turonian stages were first noted by D'Orbigny between 1843 and 1852. The global type section for this boundary is located in the Bridge Creek Limestone Member of the
Greenhorn Formation The Greenhorn Limestone or Greenhorn Formation is a geologic formation in the Great Plains Region of the United States, dating to the Cenomanian and Turonian ages of the Late Cretaceous period. The formation gives its name to the Greenhorn cycle ...
near Pueblo, Colorado, which are bedded with the Milankovitch orbital signature. Here, a positive carbon-isotope event is clearly shown, although none of the characteristic, organic-rich black
shale Shale is a fine-grained, clastic sedimentary rock formed from mud that is a mix of flakes of clay minerals (hydrous aluminium phyllosilicates, e.g. kaolin, Al2 Si2 O5( OH)4) and tiny fragments (silt-sized particles) of other minerals, especial ...
is present. It has been estimated that the isotope shift lasted approximately 850,000 years longer than the black shale event, which may be the cause of this anomaly in the Colorado type section. A significantly expanded OAE2 interval from southern Tibet documents a complete, more detailed, and finer-scale structures of the positive carbon isotope excursion that contains multiple shorter-term carbon isotope stages amounting to a total duration of 820 ±25 ka. The boundary is also known as the Bonarelli event because of layer of thick, black shale that marks the boundary and was first studied by Guido Bonarelli in 1891. It is characterized by interbedded black shales, chert and radiolarian sands and is estimated to span a 400,000-year interval. Planktonic foraminifera do not exist in this Bonarelli level, and the presence of radiolarians in this section indicates relatively high productivity and an availability of nutrients.


Cenomanian-Turonian event


Causes

One possible cause of this event is sub-oceanic volcanism, possibly the Caribbean large igneous province, with increased activity approximately 500,000 years earlier. During that period, the rate of crustal production reached its highest level for 100 million years. This was largely caused by the widespread melting of hot mantle plumes under the
ocean crust Oceanic crust is the uppermost layer of the oceanic portion of the Plate tectonics, tectonic plates. It is composed of the upper oceanic crust, with pillow lavas and a dike (geology), dike complex, and the lower oceanic crust, composed of troct ...
, at the base of the
lithosphere A lithosphere () is the rigid, outermost rocky shell of a terrestrial planet or natural satellite. On Earth, it is composed of the crust (geology), crust and the portion of the upper mantle (geology), mantle that behaves elastically on time sca ...
. This may have resulted in the thickening of the oceanic crust in the Pacific and Indian Oceans. The resulting volcanism would have sent large quantities of carbon dioxide into the atmosphere, leading to an increase in global temperatures. Within the oceans, the emission of SO2, H2S, CO2, and
halogen The halogens () are a group in the periodic table consisting of five or six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), astatine (At), and tennessine (Ts). In the modern IUPAC nomenclature, this group is ...
s would have increased the acidity of the water, causing the dissolution of carbonate, and a further release of carbon dioxide. When the volcanic activity declined, this run-away greenhouse effect would have likely been put into reverse. The increased CO2 content of the oceans could have increased organic productivity in the ocean surface waters. The consumption of this newly abundant organic life by aerobic bacteria would produce anoxia and mass extinction. The resulting elevated levels of carbon burial would account for the black shale deposition in the ocean basins.


Large igneous provinces and their possible contribution

Several independent events related to large igneous provinces (LIP) occurred around the time of OAE2. Within the time period from about 95 to 90 million years ago, two separate LIP events occurred; the Madagascar and the
Caribbean The Caribbean (, ) ( es, El Caribe; french: la Caraïbe; ht, Karayib; nl, De Caraïben) is a region of the Americas that consists of the Caribbean Sea, its islands (some surrounded by the Caribbean Sea and some bordering both the Caribbean Se ...
- Colombian. Trace metals such as
chromium Chromium is a chemical element with the symbol Cr and atomic number 24. It is the first element in group 6. It is a steely-grey, lustrous, hard, and brittle transition metal. Chromium metal is valued for its high corrosion resistance and hardne ...
(Cr), scandium (Sc), copper (Cu) and cobalt (Co) have been found at the Cenomanian-Turonian boundary, which suggests that an LIP could have been one of the main basic causes involved in the contribution of the event. The timing of the peak in trace metal concentration coincides with the middle of the anoxic event, suggesting that the effects of the LIPs may have occurred during the event, but may not have initiated the event. Other studies linked the lead (Pb) isotopes of OAE-2 to the Caribbean-Colombian and the Madagascar LIPs. A modeling study performed in 2011 confirmed that it is possible that a LIP may have initiated the event, as the model revealed that the peak amount of carbon dioxide degassing from volcanic LIP degassing could have resulted in more than 90 percent global deep-ocean anoxia.


Enhanced phosphorus recycling

A 2022 study found that the mineralisation of seafloor phosphorus into apatite was inhibited by the significantly lower pH of seawater and much warmer temperatures during the Cenomanian and Turonian compared to the present day, which meant that significantly more phosphorus was recycled back into ocean water after being deposited on the sea floor during this time. This would have intensified a positive feedback loop in which phosphorus is recycled faster into anoxic seawater compared to oxygen-rich water, which in turn fertilises the water, causes increased eutrophication, and further depletes the seawater of oxygen.


Effects

The event brought about the extinction of the pliosaurs, and most
ichthyosaur Ichthyosaurs (Ancient Greek for "fish lizard" – and ) are large extinct marine reptiles. Ichthyosaurs belong to the order known as Ichthyosauria or Ichthyopterygia ('fish flippers' – a designation introduced by Sir Richard Owen in 1842, altho ...
s. Coracoids of Maastrichtian age were once interpreted by some authors as belonging to ichthyosaurs, but these have since been interpreted as
plesiosaur The Plesiosauria (; Greek: πλησίος, ''plesios'', meaning "near to" and ''sauros'', meaning "lizard") or plesiosaurs are an order or clade of extinct Mesozoic marine reptiles, belonging to the Sauropterygia. Plesiosaurs first appeared ...
elements instead. Although the cause is still uncertain, the result starved the Earth's oceans of oxygen for nearly half a million years, causing the extinction of approximately 27 percent of marine invertebrates, including certain planktic and
benthic The benthic zone is the ecological region at the lowest level of a body of water such as an ocean, lake, or stream, including the sediment surface and some sub-surface layers. The name comes from ancient Greek, βένθος (bénthos), meaning "t ...
foraminifera,
mollusks Mollusca is the second-largest phylum of invertebrate animals after the Arthropoda, the members of which are known as molluscs or mollusks (). Around 85,000  extant species of molluscs are recognized. The number of fossil species is esti ...
,
bivalves Bivalvia (), in previous centuries referred to as the Lamellibranchiata and Pelecypoda, is a class of marine and freshwater molluscs that have laterally compressed bodies enclosed by a shell consisting of two hinged parts. As a group, bival ...
,
dinoflagellate The dinoflagellates (Greek δῖνος ''dinos'' "whirling" and Latin ''flagellum'' "whip, scourge") are a monophyletic group of single-celled eukaryotes constituting the phylum Dinoflagellata and are usually considered algae. Dinoflagellates are ...
s and calcareous nannofossils. The global environmental disturbance that resulted in these conditions increased atmospheric and oceanic temperatures. Boundary sediments show an enrichment of trace elements, and contain elevated δ13C values.


The δ13C isotope excursion

The positive δ13C isotope excursion found at the Cenomanian-Turonian boundary is one of the main carbon isotope events of the Mesozoic. It represents one of the largest disturbances in the global carbon cycle from the past 110 million years. This δ13C isotope excursion indicates a significant increase in the burial rate of organic carbon, indicating the widespread deposition and preservation of organic carbon-rich sediments and that the ocean was depleted of oxygen at the time. Within the positive carbon isotope excursion, short eccentricity scale carbon isotope variability is documented in a significantly expanded OAE2 interval from southern Tibet.


Changes in oceanic biodiversity and its implications

The alterations in diversity of various marine invertebrate species such as calcareous nanofossils indicate a time when the oceans were warm and
oligotrophic An oligotroph is an organism that can live in an environment that offers very low levels of nutrients. They may be contrasted with copiotrophs, which prefer nutritionally rich environments. Oligotrophs are characterized by slow growth, low rates of ...
, in an environment with short spikes of productivity followed by long periods of low fertility. A study performed in the Cenomanian-Turonian boundary of Wunstorf, Germany, reveal the uncharacteristic dominance of a calcareous nannofossil species, ''Watznaueria'', present during the event. Unlike the ''Biscutum'' species, which prefer mesotrophic conditions and were generally the dominant species before and after the C/T boundary event; ''Watznaueria'' species prefer warm, oligotrophic conditions. At the time, there were also peak abundances of green algal groups '' Botryococcus'' and ''prasinophytes'', coincident with pelagic sedimentation. The abundances of these algal groups are strongly related to the increase of both the oxygen deficiency in the water column and the total organic carbon content. The evidence from these algal groups suggest that there were episodes of halocline stratification of the water column during the time. A species of freshwater dinocyst—the Bosedinia was also found in the rocks dated to the time and these suggest that the oceans had reduced salinity.


See also

* Biodiversity of the Cenomanian and Turonian ** Cenomanian life ** Turonian life ** Cenomanian extinctions ** Turonian extinctions *
Extinction event An extinction event (also known as a mass extinction or biotic crisis) is a widespread and rapid decrease in the biodiversity on Earth. Such an event is identified by a sharp change in the diversity and abundance of multicellular organisms. I ...
*
Timeline of extinctions in the Holocene This article is a list of biological species, subspecies, and evolutionary significant units that are known to have become extinct during the Holocene, the current geologic epoch, ordered by their known or approximate date of disappearance from ol ...
** Toarcian turnover ** Cretaceous–Paleogene extinction event


References


Further reading

* * {{ExtEvent nav Extinction events Ceno Paleoclimatology