HOME

TheInfoList



OR:

Cellulosomes are multi-
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. A ...
extracellular complexes. Cellulosomes are associated with the cell surface and mediate cell attachment to insoluble substrates and degrade them to soluble products which are then absorbed. Cellulosome complexes are intricate, multi-enzyme machines, produced by many cellulolytic microorganisms. They are produced by microorganisms for efficient degradation of plant cell wall
polysaccharides Polysaccharides (), or polycarbohydrates, are the most abundant carbohydrates found in food. They are long chain polymeric carbohydrates composed of monosaccharide units bound together by glycosidic linkages. This carbohydrate can react with w ...
, notably
cellulose Cellulose is an organic compound with the formula , a polysaccharide consisting of a linear chain of several hundred to many thousands of β(1→4) linked D-glucose units. Cellulose is an important structural component of the primary cell wall ...
, the most abundant organic
polymer A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
on Earth. The multiple subunits of cellulosomes are composed of numerous functional domains that interact with each other and with the cellulosic substrate. One of these subunits, a large glycoprotein "scaffoldin", is a distinctive class of non-catalytic scaffolding
polypeptides Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. A p ...
. The scaffoldin subunit selectively integrates the various cellulases and
xylanase Endo-1,4-β-xylanase (EC 3.2.1.8, systematic name 4-β-D-xylan xylanohydrolase) is any of a class of enzymes that degrade the linear polysaccharide xylan into xylose, thus breaking down hemicellulose, one of the major components of plant cell w ...
subunits into the cohesive complex, by combining its
cohesin Cohesin is a protein complex that mediates sister chromatid cohesion, homologous recombination, and DNA looping. Cohesin is formed of SMC3, SMC1, SCC1 and SCC3 ( SA1 or SA2 in humans). Cohesin holds sister chromatids together after DNA rep ...
domains with a typical
dockerin Dockerin is a protein domain found in the cellulosome cellular structure of anaerobic bacteria. It is found on many endoglucanase enzymes. The dockerin's binding partner is the cohesin domain, located on the scaffoldin protein. This interaction ...
domain present on each of the subunit enzymes. The scaffoldin of some cellulosomes, an example being that of ''Clostridium thermocellum'', contains a
carbohydrate-binding module In molecular biology, a carbohydrate-binding module (CBM) is a protein domain found in carbohydrate-active enzymes (for example glycoside hydrolases). The majority of these domains have carbohydrate-binding activity. Some of the ...
that adheres cellulose to the cellulosomal complex.


Structure

Cellulosomes exist as extracellular complexes that are either attached to the cell wall of bacteria or free in solution, where the insoluble substrate can be broken down into soluble products and taken up by the cell. The large size and heterogeneity of cellulosomes from the best-characterized organisms (i.e., ''C. thermocellum, C. cellulolyticum, and C. cellulovorans'') have greatly complicated efforts to probe cellulosome structure and function. Other cellulosome systems (such as those from ''Acetivibrio cellulolyticus and Ruminococcus flavefaciens'') appear to be even more intricate. The cellulosome consists of a multi-functional, integrating scaffoldin subunit, responsible for organizing the various cellulolytic subunits (e.g., the enzymes) into the complex. Within a cellulosome, multiple endoglucanases, cellobiohydrolases, xylanases and other degradative enzymes work synergistically to attack heterogeneous, insoluble cellulose substrates. This is accomplished by the interaction of two complementary classes of module, located on the two separate types of interacting subunits, i.e., a cohesin module on the scaffoldin and a dockerin module on each enzymatic subunit. The high-affinity cohesin-dockerin interaction defines the cellulosome structure. Attachment of the cellulosome to its substrate is mediated by a scaffoldin-borne cellulose-binding module (CBM) that comprises part of the scaffoldin subunit. Much of our understanding of its catalytic components, architecture, and mechanisms of attachment to the bacterial cell and to cellulose, has been derived from the study of ''
Clostridium thermocellum ''Acetivibrio thermocellus'' is an anaerobic, thermophilic bacterium. ''A. thermocellusm'' has garnered research interest due to its cellulolytic and ethanologenic abilities, being capable of directly converting a cellulosic substrate into etha ...
''.


History of discovery

In the early 1980s, Raphael Lamed and Ed Bayer met at Tel Aviv University, Israel and commenced their work that led to the discovery of the cellulosome concept. At the time, they weren’t looking for enzymes or cellulosomes at all. They simply sought a ‘cellulose-binding factor’ or ‘CBF’ on the cell surface of the anaerobic thermophilic bacterium, ''C. thermocellum'', which they inferred would account for the observation that the bacterium attaches strongly to the insoluble cellulose substrate prior to its degradation. They employed a then unconventional experimental approach, in which they isolated an adherence-defective mutant of the bacterium and prepared a specific polyclonal antibody for detection of the functional component. Surprisingly, they isolated a very large multi-sub-unit supra-molecular complex, instead of a small protein. A combination of biochemical, biophysical, immun-ochemical and ultra-structural techniques, followed by molecular biological verification, led to the definition and proof of the cellulosome concept. The birth of the discrete, multi-enzyme cellulosome complex was thus documented. Currently known cellulosome-producing anaerobic bacteria: * ''Acetivibrio cellulolyticus'' * ''Bacteroides cellulosolvens'' * ''Clostridium acetobutylicum'' * ''Clostridium cellulolyticum'' * ''Clostridium cellulovorans'' * ''Clostridium clariflavum'' * ''Clostridium josui'' * ''Clostridium papyrosolvens'' * ''Clostridium thermocellum'' (treated as model organism in cellulose utilization and also anaerobic degradation) * ''Ruminococcus albus'' (dockerins identified, cohesins as yet undetected) * ''Ruminococcus flavefaciens''


Application

Intelligent application of cellulosome hybrids and chimeric constructs ("nanosomes") of cellulosomal domains should enable better use of cellulosic biomass and may offer a wide range of novel applications.


See also

*
Dockerin Dockerin is a protein domain found in the cellulosome cellular structure of anaerobic bacteria. It is found on many endoglucanase enzymes. The dockerin's binding partner is the cohesin domain, located on the scaffoldin protein. This interaction ...
*
Organelle In cell biology, an organelle is a specialized subunit, usually within a cell, that has a specific function. The name ''organelle'' comes from the idea that these structures are parts of cells, as organs are to the body, hence ''organelle,'' the ...


References


External links

* {{MeshName, Cellulosomes
"The cellulosome: an exocellular, multiprotein complex specialized in cellulose degradation"





Diagram at Lamed's Lab, Tel Aviv University

Cellulosome at Cazypedia
Cellulose