HOME

TheInfoList



OR:

Cellulosic ethanol is ethanol (ethyl alcohol) produced from cellulose (the stringy fiber of a plant) rather than from the plant's seeds or fruit. It can be produced from grasses, wood,
algae Algae (; singular alga ) is an informal term for a large and diverse group of photosynthetic eukaryotic organisms. It is a polyphyletic grouping that includes species from multiple distinct clades. Included organisms range from unicellular mic ...
, or other plants. It is generally discussed for use as a
biofuel Biofuel is a fuel that is produced over a short time span from biomass, rather than by the very slow natural processes involved in the formation of fossil fuels, such as oil. According to the United States Energy Information Administration (E ...
. The
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is t ...
that plants absorb as they grow offsets some of the carbon dioxide emitted when ethanol made from them is
burned Burned or burnt may refer to: * Anything which has undergone combustion * Burned (image), quality of an image transformed with loss of detail in all portions lighter than some limit, and/or those darker than some limit * ''Burnt'' (film), a 2015 ...
, so cellulosic ethanol fuel has the potential to have a lower
carbon footprint A carbon footprint is the total greenhouse gas (GHG) emissions caused by an individual, event, organization, service, place or product, expressed as carbon dioxide equivalent (CO2e). Greenhouse gases, including the carbon-containing gases carbo ...
than
fossil fuel A fossil fuel is a hydrocarbon-containing material formed naturally in the Earth's crust from the remains of dead plants and animals that is extracted and burned as a fuel. The main fossil fuels are coal, oil, and natural gas. Fossil fuels m ...
s. Interest in cellulosic ethanol is driven by its potential to replace ethanol made from corn or
sugarcane Sugarcane or sugar cane is a species of (often hybrid) tall, Perennial plant, perennial grass (in the genus ''Saccharum'', tribe Andropogoneae) that is used for sugar Sugar industry, production. The plants are 2–6 m (6–20 ft) tall with ...
. Since these plants are also used for food products, diverting them for ethanol production can cause food prices to rise; cellulose-based sources, on the other hand, generally do not compete with food, since the fibrous parts of plants are mostly inedible to humans. Another potential advantage is the high diversity and abundance of cellulose sources; grasses, trees and algae are found in almost every environment on Earth. Even municipal solid waste components like paper could conceivably be made into ethanol. The main current disadvantage of cellulosic ethanol is its high cost of production, which is more complex and requires more steps than corn-based or sugarcane-based ethanol. Cellulosic ethanol received significant attention in the 2000s and early 2010s. The United States government in particular funded research into its commercialization and set targets for the proportion of cellulosic ethanol added to vehicle fuel. A large number of new companies specializing in cellulosic ethanol, in addition to many existing companies, invested in pilot-scale production plants. However, the much cheaper manufacturing of grain-based ethanol, along with the low price of oil in the 2010s, meant that cellulosic ethanol was not competitive with these established fuels. As a result, most of the new refineries were closed by the mid-2010s and many of the newly founded companies became insolvent. A few still exist, but are mainly used for demonstration or research purposes; as of 2021, none produces cellulosic ethanol at scale.


Overview

Cellulosic ethanol is a type of
biofuel Biofuel is a fuel that is produced over a short time span from biomass, rather than by the very slow natural processes involved in the formation of fossil fuels, such as oil. According to the United States Energy Information Administration (E ...
produced from lignocellulose, a structural material that comprises much of the mass of plants and is composed mainly of cellulose, hemicellulose and
lignin Lignin is a class of complex organic polymers that form key structural materials in the support tissues of most plants. Lignins are particularly important in the formation of cell walls, especially in wood and bark, because they lend rigidity ...
. Popular sources of lignocellulose include both agricultural waste products (e.g.
corn stover Maize ( ; ''Zea mays'' subsp. ''mays'', from es, maíz after tnq, mahiz), also known as corn (North American and Australian English), is a cereal grain first domesticated by indigenous peoples in southern Mexico about 10,000 years ago. Th ...
or wood chips) and grasses like switchgrass and ''
miscanthus ''Miscanthus'', or silvergrass, is a genus of African, Eurasian, and Pacific Island plants in the grass family, Poaceae. ; Species * ''Miscanthus changii'' Y.N.Lee – Korea * ''Miscanthus depauperatus'' Merr. – the Philippines * ''Miscanthus ...
'' species. These raw materials for ethanol production have the advantage of being abundant and diverse and would not compete with food production, unlike the more commonly used corn and cane sugars. However, they also require more processing to make the sugar monomers available to the microorganisms typically used to produce ethanol by fermentation, which drives up the price of cellulos-derived ethanol. Cellulosic ethanol can reduce greenhouse gas emissions by 85% over reformulated gasoline. By contrast, starch ethanol (e.g., from corn), which most frequently uses natural gas to provide energy for the process, may not reduce greenhouse gas emissions at all depending on how the starch-based feedstock is produced. According to the
National Academy of Sciences The National Academy of Sciences (NAS) is a United States nonprofit, non-governmental organization. NAS is part of the National Academies of Sciences, Engineering, and Medicine, along with the National Academy of Engineering (NAE) and the Nati ...
in 2011, there is no commercially viable bio-refinery in existence to convert lignocellulosic biomass to fuel. Absence of production of cellulosic ethanol in the quantities required by the regulation was the basis of a United States Court of Appeals for the District of Columbia decision announced January 25, 2013, voiding a requirement imposed on car and truck fuel producers in the United States by the Environmental Protection Agency requiring addition of cellulosic biofuels to their products. These issues, along with many other difficult production challenges, led George Washington University policy researchers to state that "in the short term, ellulosicethanol cannot meet the energy security and environmental goals of a gasoline alternative."


History

The French chemist, Henri Braconnot, was the first to discover that cellulose could be hydrolyzed into sugars by treatment with
sulfuric acid Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid ( Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen and hydrogen, with the molecular formu ...
in 1819. The hydrolyzed sugar could then be processed to form ethanol through fermentation. The first commercialized ethanol production began in Germany in 1898, where acid was used to hydrolyze cellulose. In the United States, the Standard Alcohol Company opened the first cellulosic ethanol production plant in South Carolina in 1910. Later, a second plant was opened in Louisiana. However, both plants were closed after World War I due to economic reasons. The first attempt at commercializing a process for ethanol from wood was done in Germany in 1898. It involved the use of dilute acid to hydrolyze the cellulose to glucose, and was able to produce 7.6 liters of ethanol per 100 kg of wood waste ( per ton). The Germans soon developed an industrial process optimized for yields of around per ton of biomass. This process soon found its way to the US, culminating in two commercial plants operating in the southeast during World War I. These plants used what was called "the American Process" — a one-stage dilute sulfuric acid hydrolysis. Though the yields were half that of the original German process ( of ethanol per ton versus 50), the throughput of the American process was much higher. A drop in lumber production forced the plants to close shortly after the end of World War I. In the meantime, a small but steady amount of research on dilute acid hydrolysis continued at the
USFS The United States Forest Service (USFS) is an agency of the U.S. Department of Agriculture that administers the nation's 154 national forests and 20 national grasslands. The Forest Service manages of land. Major divisions of the agency inc ...
's Forest Products Laboratory. During World War II, the US again turned to cellulosic ethanol, this time for conversion to butadiene to produce synthetic rubber. The Vulcan Copper and Supply Company was contracted to construct and operate a plant to convert sawdust into ethanol. The plant was based on modifications to the original German Scholler process as developed by the Forest Products Laboratory. This plant achieved an ethanol yield of per dry ton, but was still not profitable and was closed after the war. With the rapid development of enzyme technologies in the last two decades, the acid hydrolysis process has gradually been replaced by enzymatic hydrolysis. Chemical pretreatment of the feedstock is required to hydrolyze (separate) hemicellulose, so it can be more effectively converted into sugars. The dilute acid pretreatment is developed based on the early work on acid hydrolysis of wood at the
USFS The United States Forest Service (USFS) is an agency of the U.S. Department of Agriculture that administers the nation's 154 national forests and 20 national grasslands. The Forest Service manages of land. Major divisions of the agency inc ...
's Forest Products Laboratory. Recently, the Forest Products Laboratory together with the University of Wisconsin–Madison developed a sulfite pretreatment to overcome the recalcitrance of lignocellulose for robust enzymatic hydrolysis of wood cellulose. In his 2007 State of the Union Address on January 23, 2007, US President George W. Bush announced a proposed mandate for of ethanol by 2017. Later that year, the US Department of Energy awarded $385 million in grants aimed at jump-starting ethanol production from nontraditional sources like wood chips, switchgrass, and citrus peels.


Production methods

The stages to produce ethanol using a biological approach are: # A "pretreatment" phase to make the lignocellulosic material such as wood or straw amenable to hydrolysis # Cellulose hydrolysis ( cellulolysis) to break down the molecules into sugars # Microbial fermentation of the sugar solution # Distillation and dehydration to produce pure alcohol In 2010, a genetically engineered yeast strain was developed to produce its own cellulose-digesting enzymes. Assuming this technology can be scaled to industrial levels, it would eliminate one or more steps of cellulolysis, reducing both the time required and costs of production. Although lignocellulose is the most abundant plant material resource, its usability is curtailed by its rigid structure. As a result, an effective pretreatment is needed to liberate the cellulose from the lignin seal and its crystalline structure so as to render it accessible for a subsequent hydrolysis step. By far, most pretreatments are done through physical or chemical means. To achieve higher efficiency, both physical and chemical pretreatments are required. Physical pretreatment involves reducing biomass particle size by mechanical processing methods such as
milling Milling may refer to: * Milling (minting), forming narrow ridges around the edge of a coin * Milling (grinding), breaking solid materials into smaller pieces by grinding, crushing, or cutting in a mill * Milling (machining), a process of using rota ...
or extrusion. Chemical pretreatment partially depolymerizes the lignocellulose so enzymes can access the cellulose for microbial reactions. Chemical pretreatment techniques include acid hydrolysis, steam explosion, ammonia fiber expansion, organosolv, sulfite pretreatment, SO2-ethanol-water fractionation, alkaline wet oxidation and ozone pretreatment. Besides effective cellulose liberation, an ideal pretreatment has to minimize the formation of degradation products because they can inhibit the subsequent hydrolysis and fermentation steps. The presence of inhibitors further complicates and increases the cost of ethanol production due to required detoxification steps. For instance, even though acid hydrolysis is probably the oldest and most-studied pretreatment technique, it produces several potent inhibitors including
furfural Furfural is an organic compound with the formula C4H3OCHO. It is a colorless liquid, although commercial samples are often brown. It has an aldehyde group attached to the 2-position of furan. It is a product of the dehydration of sugars, as occurs ...
and hydroxymethylfurfural. Ammonia Fiber Expansion (AFEX) is an example of a promising pretreatment that produces no inhibitors. Most pretreatment processes are not effective when applied to feedstocks with high lignin content, such as forest biomass. These require alternative or specialized approaches.
Organosolv In industrial paper-making processes, organosolv is a pulping technique that uses an organic solvent to solubilise lignin and hemicellulose. It has been considered in the context of both pulp and paper manufacture and biorefining for subsequent conv ...
, SPORL ('sulfite pretreatment to overcome recalcitrance of lignocellulose') and SO2-ethanol-water (AVAP®) processes are the three processes that can achieve over 90% cellulose conversion for forest biomass, especially those of softwood species. SPORL is the most energy efficient (sugar production per unit energy consumption in pretreatment) and robust process for pretreatment of forest biomass with very low production of fermentation inhibitors. Organosolv pulping is particularly effective for hardwoods and offers easy recovery of a hydrophobic lignin product by dilution and precipitation.
AVAP® process effectively fractionates all types of lignocellulosics into clean highly digestible cellulose, undegraded hemicellulose sugars, reactive lignin and lignosulfonates, and is characterized by efficient recovery of chemicals.


Cellulolytic processes

The hydrolysis of cellulose ( cellulolysis) produces simple sugars that can be fermented into alcohol. There are two major cellulolysis processes: chemical processes using acids, or enzymatic reactions using cellulases.


Chemical hydrolysis

In the traditional methods developed in the 19th century and at the beginning of the 20th century, hydrolysis is performed by attacking the cellulose with an acid. Dilute acid may be used under high heat and high pressure, or more concentrated acid can be used at lower temperatures and atmospheric pressure. A decrystallized cellulosic mixture of acid and sugars reacts in the presence of water to complete individual sugar molecules (hydrolysis). The product from this hydrolysis is then neutralized and yeast fermentation is used to produce ethanol. As mentioned, a significant obstacle to the dilute acid process is that the hydrolysis is so harsh that toxic degradation products are produced that can interfere with fermentation. BlueFire Renewables uses concentrated acid because it does not produce nearly as many fermentation inhibitors, but must be separated from the sugar stream for recycle imulated moving bed chromatographic separation, for exampleto be commercially attractive.
Agricultural Research Service The Agricultural Research Service (ARS) is the principal in-house research agency of the United States Department of Agriculture (USDA). ARS is one of four agencies in USDA's Research, Education and Economics mission area. ARS is charged with ext ...
scientists found they can access and ferment almost all of the remaining sugars in wheat straw. The sugars are located in the plant's cell walls, which are notoriously difficult to break down. To access these sugars, scientists pretreated the wheat straw with alkaline peroxide, and then used specialized enzymes to break down the cell walls. This method produced of ethanol per ton of wheat straw.


Enzymatic hydrolysis

Cellulose chains can be broken into glucose molecules by cellulase enzymes. This reaction occurs at body temperature in the stomachs of ruminants such as cattle and sheep, where the enzymes are produced by microbes. This process uses several enzymes at various stages of this conversion. Using a similar enzymatic system, lignocellulosic materials can be enzymatically hydrolyzed at a relatively mild condition (50 °C and pH 5), thus enabling effective cellulose breakdown without the formation of byproducts that would otherwise inhibit enzyme activity. All major pretreatment methods, including dilute acid, require an enzymatic hydrolysis step to achieve high sugar yield for ethanol fermentation. Fungal enzymes can be used to hydrolyze cellulose. The raw material (often wood or straw) still has to be pre-treated to make it amenable to hydrolysis. In 2005, Iogen Corporation announced it was developing a process using the fungus ''
Trichoderma reesei ''Trichoderma reesei'' is a mesophilic and filamentous fungus. It is an anamorph of the fungus ''Hypocrea jecorina''. ''T. reesei'' can secrete large amounts of cellulolytic enzymes (cellulases and hemicellulases). Microbial cellulases have indu ...
'' to secrete "specially engineered enzymes" for an enzymatic hydrolysis process. Another Canadian company, SunOpta, uses steam explosion pretreatment, providing its technology to Verenium (formerly Celunol Corporation)'s facility in Jennings, Louisiana, Abengoa's facility in Salamanca, Spain, and a China Resources Alcohol Corporation in Zhaodong. The CRAC production facility uses
corn stover Maize ( ; ''Zea mays'' subsp. ''mays'', from es, maíz after tnq, mahiz), also known as corn (North American and Australian English), is a cereal grain first domesticated by indigenous peoples in southern Mexico about 10,000 years ago. Th ...
as raw material.


Microbial fermentation

Traditionally, baker's yeast ('' Saccharomyces cerevisiae''), has long been used in the brewery industry to produce ethanol from hexoses (six-carbon sugars). Due to the complex nature of the carbohydrates present in lignocellulosic biomass, a significant amount of xylose and
arabinose Arabinose is an aldopentose – a monosaccharide containing five carbon atoms, and including an aldehyde (CHO) functional group. For biosynthetic reasons, most saccharides are almost always more abundant in nature as the "D"-form, or structurally ...
(five-carbon sugars derived from the hemicellulose portion of the lignocellulose) is also present in the hydrolysate. For example, in the hydrolysate of
corn stover Maize ( ; ''Zea mays'' subsp. ''mays'', from es, maíz after tnq, mahiz), also known as corn (North American and Australian English), is a cereal grain first domesticated by indigenous peoples in southern Mexico about 10,000 years ago. Th ...
, approximately 30% of the total fermentable sugars is xylose. As a result, the ability of the fermenting microorganisms to use the whole range of sugars available from the hydrolysate is vital to increase the economic competitiveness of cellulosic ethanol and potentially biobased proteins. In recent years, metabolic engineering for microorganisms used in fuel ethanol production has shown significant progress. Besides ''Saccharomyces cerevisiae'', microorganisms such as ''Zymomonas mobilis'' and ''Escherichia coli'' have been targeted through metabolic engineering for cellulosic ethanol production. An attraction towards alternative fermentation organism is its ability to ferment five carbon sugars improving the yield of the feed stock. This ability is often found in bacteria based organisms. Recently, engineered yeasts have been described efficiently fermenting xylose, and arabinose, and even both together. Yeast cells are especially attractive for cellulosic ethanol processes because they have been used in biotechnology for hundreds of years, are tolerant to high ethanol and inhibitor concentrations and can grow at low pH values to reduce bacterial contamination.


Combined hydrolysis and fermentation

Some species of bacteria have been found capable of direct conversion of a cellulose substrate into ethanol. One example is '' Clostridium thermocellum'', which uses a complex cellulosome to break down cellulose and synthesize ethanol. However, ''C. thermocellum'' also produces other products during cellulose metabolism, including
acetate An acetate is a salt (chemistry), salt formed by the combination of acetic acid with a base (e.g. Alkali metal, alkaline, Alkaline earth metal, earthy, Transition metal, metallic, nonmetallic or radical Radical (chemistry), base). "Acetate" als ...
and
lactate Lactate may refer to: * Lactation, the secretion of milk from the mammary glands * Lactate, the conjugate base of lactic acid Lactic acid is an organic acid. It has a molecular formula . It is white in the solid state and it is miscible with ...
, in addition to ethanol, lowering the efficiency of the process. Some research efforts are directed to optimizing ethanol production by genetically engineering bacteria that focus on the ethanol-producing pathway.


Gasification process (thermochemical approach)

The gasification process does not rely on chemical decomposition of the cellulose chain (cellulolysis). Instead of breaking the cellulose into sugar molecules, the carbon in the raw material is converted into synthesis gas, using what amounts to partial combustion. The carbon monoxide, carbon dioxide and hydrogen may then be fed into a special kind of fermenter. Instead of sugar fermentation with yeast, this process uses ''
Clostridium ljungdahlii ''Clostridium ljungdahlii'' is an anaerobic, rod-shaped, motile, endospore-forming, gram-positive bacterium. It is named after the biochemist Lars G. Ljungdahl. When originally harvested from the waste matter of animals, it tended to produce acet ...
'' bacteria. This microorganism will ingest carbon monoxide, carbon dioxide and hydrogen and produce ethanol and water. The process can thus be broken into three steps: #
Gasification Gasification is a process that converts biomass- or fossil fuel-based carbonaceous materials into gases, including as the largest fractions: nitrogen (N2), carbon monoxide (CO), hydrogen (H2), and carbon dioxide (). This is achieved by reacting ...
— Complex carbon-based molecules are broken apart to access the carbon as carbon monoxide, carbon dioxide and hydrogen # Fermentation — Convert the carbon monoxide, carbon dioxide and hydrogen into ethanol using the ''Clostridium ljungdahlii'' organism # Distillation — Ethanol is separated from water A recent study has found another ''Clostridium'' bacterium that seems to be twice as efficient in making ethanol from carbon monoxide as the one mentioned above. Alternatively, the synthesis gas from gasification may be fed to a catalytic reactor where it is used to produce ethanol and other higher alcohols through a thermochemical process. This process can also generate other types of liquid fuels, an alternative concept successfully demonstrated by the Montreal-based company Enerkem at their facility in Westbury, Quebec.


Hemicellulose to ethanol

Studies are intensively conducted to develop economic methods to convert both cellulose and hemicellulose to ethanol. Fermentation of glucose, the main product of cellulose hydrolyzate, to ethanol is an already established and efficient technique. However, conversion of xylose, the pentose sugar of hemicellulose hydrolyzate, is a limiting factor, especially in the presence of glucose. Moreover, it cannot be disregarded as hemicellulose will increase the efficiency and cost-effectiveness of cellulosic ethanol production. Sakamoto (2012) et al. show the potential of genetic engineering microbes to express hemicellulase enzymes. The researchers created a recombinant Saccharomyces cerevisiae strain that was able to: # hydrolyze hemicellulase through codisplaying endoxylanase on its cell surface, # assimilate xylose by expression of xylose reductase and xylitol dehydrogenase. The strain was able to convert rice straw hydrolyzate to ethanol, which contains hemicellulosic components. Moreover, it was able to produce 2.5x more ethanol than the control strain, showing the highly effective process of cell surface-engineering to produce ethanol.


Advantages


General advantages of ethanol fuel

Ethanol burns more cleanly and more efficiently than gasoline. Because plants consume carbon dioxide as they grow, bioethanol has an overall lower carbon footprint than fossil fuels. Substituting ethanol for oil can also reduce a country's dependence on oil imports.


Advantages of cellulosic ethanol over corn or sugar-based ethanol

Commercial production of cellulosic ethanol, which unlike corn and sugarcane would not compete with food production, would be highly attractive since it would alleviate pressure on these foodcrops. Although its processing costs are higher, the price of cellulose biomass is much cheaper than that of grains or fruits. Moreover, since cellulose is the main component of plants, the whole plant can be harvested, rather than just the fruit or seeds. This results in much better yields; for instance, switchgrass yields twice as much ethanol per acre as corn. Biomass materials for cellulose production require fewer inputs, such as fertilizer, herbicides, and their extensive roots improve soil quality, reduce erosion, and increase nutrient capture. The overall carbon footprint and global warming potential of cellulosic ethanol are considerably lower (see chart) and the net energy output is several times higher than that of corn-based ethanol. The potential raw material is also plentiful. Around 44% of household waste generated worldwide consists of food and greens. An estimated 323 million tons of cellulose-containing raw materials which could be used to create ethanol are thrown away each year in US alone. This includes 36.8 million dry tons of urban wood wastes, 90.5 million dry tons of primary mill residues, 45 million dry tons of forest residues, and 150.7 million dry tons of corn stover and wheat straw. Moreover, even land marginal for agriculture could be planted with cellulose-producing crops, such as switchgrass, resulting in enough production to substitute for all the current oil imports into the United States. Paper, cardboard, and packaging comprise around 17% of global household waste; although some of this is recycled. As these products contain cellulose, they are transformable into cellulosic ethanol, which would avoid the production of methane, a potent greenhouse gas, during decomposition.


Disadvantages


General disadvantages

The main overall drawback of ethanol fuel is its lower fuel economy compared to gasoline when using ethanol in an engine designed for gasoline with a lower compression ratio.


Disadvantages of cellulosic ethanol over corn or sugar-based ethanol

The main disadvantage of cellulosic ethanol is its high cost and complexity of production, which has been the main impediment to its commercialization.


Economics

Although the global bioethanol market is sizable (around 110 billion liters in 2019), the vast majority is made from
corn Maize ( ; ''Zea mays'' subsp. ''mays'', from es, maíz after tnq, mahiz), also known as corn (North American and Australian English), is a cereal grain first domesticated by indigenous peoples in southern Mexico about 10,000 years ago. Th ...
or
sugarcane Sugarcane or sugar cane is a species of (often hybrid) tall, Perennial plant, perennial grass (in the genus ''Saccharum'', tribe Andropogoneae) that is used for sugar Sugar industry, production. The plants are 2–6 m (6–20 ft) tall with ...
, not cellulose. In 2007, the cost of producing ethanol from cellulosic sources was estimated ca. USD 2.65 per gallon (€0.58 per liter), which is around 2–3 times more expensive than ethanol made from corn. However, the cellulosic ethanol market remains relatively small and reliant on government subsidies. The US government originally set cellulosic ethanol targets gradually ramping up from 1 billion liters in 2011 to 60 billion liters in 2022. However, these annual goals have almost always been waived after it became clear there was no chance of meeting them. Most of the plants to produce cellulosic ethanol were canceled or abandoned in the early 2010s. Plants built or financed by
DuPont DuPont de Nemours, Inc., commonly shortened to DuPont, is an American multinational chemical company first formed in 1802 by French-American chemist and industrialist Éleuthère Irénée du Pont de Nemours. The company played a major role in ...
,
General Motors The General Motors Company (GM) is an American Multinational corporation, multinational Automotive industry, automotive manufacturing company headquartered in Detroit, Michigan, United States. It is the largest automaker in the United States and ...
and BP, among many others, were closed or sold. As of 2018, only one major plant remains in the US. In order for it to be grown on a large-scale production, cellulose biomass must compete with existing uses of agricultural land, mainly for the production of crop commodities. Of the United States' 2.26 billion acres (9.1 million km2) of unsubmerged land, 33% are forestland, 26% pastureland and grassland, and 20% crop land. A study by the U.S. Departments of Energy and Agriculture in 2005 suggested that 1.3 billion dry tons of biomass is theoretically available for ethanol use while maintaining an acceptable impact on forestry, agriculture.


Comparison with corn-based ethanol

Currently, cellulose is more difficult and more expensive to process into ethanol than corn or sugarcane. The US Department of Energy estimated in 2007 that it costs about $2.20 per gallon to produce cellulosic ethanol, which is 2–3 times much as ethanol from corn. Enzymes that destroy plant cell wall tissue cost US$0.40 per gallon of ethanol compared to US$0.03 for corn. However, cellulosic biomass is cheaper to produce than corn, because it requires fewer inputs, such as energy, fertilizer, herbicide, and is accompanied by less soil erosion and improved soil fertility. Additionally, nonfermentable and unconverted solids left after making ethanol can be burned to provide the fuel needed to operate the conversion plant and produce electricity. Energy used to run corn-based ethanol plants is derived from coal and natural gas. The Institute for Local Self-Reliance estimates the cost of cellulosic ethanol from the first generation of commercial plants will be in the $1.90–$2.25 per gallon range, excluding incentives. This compares to the current cost of $1.20–$1.50 per gallon for ethanol from corn and the current retail price of over $4.00 per gallon for regular gasoline (which is subsidized and taxed).


Enzyme-cost barrier

Cellulases and hemicellulases used in the production of cellulosic ethanol are more expensive compared to their first generation counterparts. Enzymes required for maize grain ethanol production cost 2.64-5.28 US dollars per cubic meter of ethanol produced. Enzymes for cellulosic ethanol production are projected to cost 79.25 US dollars, meaning they are 20-40 times more expensive. The cost differences are attributed to quantity required. The cellulase family of enzymes have a one to two order smaller magnitude of efficiency. Therefore, it requires 40 to 100 times more of the enzyme to be present in its production. For each ton of biomass it requires 15-25 kilograms of enzyme. More recent estimates are lower, suggesting 1 kg of enzyme per dry tonne of biomass feedstock. There is also relatively high capital costs associated with the long incubation times for the vessel that perform enzymatic hydrolysis. Altogether, enzymes comprise a significant portion of 20-40% for cellulosic ethanol production. A recent paper estimates the range at 13-36% of cash costs, with a key factor being how the cellulase enzyme is produced. For cellulase produced offsite, enzyme production amounts to 36% of cash cost. For enzyme produced onsite in a separate plant, the fraction is 29%; for integrated enzyme production, the fraction is 13%. One of the key benefits of integrated production is that biomass instead of glucose is the enzyme growth medium. Biomass costs less, and it makes the resulting cellulosic ethanol a 100% second-generation biofuel, i.e., it uses no ‘food for fuel’.


Feedstocks

In general there are two types of feedstocks: forest (woody) Biomass and agricultural biomass. In the US, about 1.4 billion dry tons of biomass can be sustainably produced annually. About 370 million tons or 30% are forest biomass. Forest biomass has higher cellulose and lignin content and lower hemicellulose and ash content than agricultural biomass. Because of the difficulties and low ethanol yield in fermenting pretreatment hydrolysate, especially those with very high 5 carbon hemicellulose sugars such as xylose, forest biomass has significant advantages over agricultural biomass. Forest biomass also has high density which significantly reduces transportation cost. It can be harvested year around which eliminates long-term storage. The close to zero ash content of forest biomass significantly reduces dead load in transportation and processing. To meet the needs for biodiversity, forest biomass will be an important biomass feedstock supply mix in the future biobased economy. However, forest biomass is much more recalcitrant than agricultural biomass. Recently, the USDA Forest Products Laboratory together with the University of Wisconsin–Madison developed efficient technologies that can overcome the strong recalcitrance of forest (woody) biomass including those of softwood species that have low xylan content. Short-rotation intensive culture or tree farming can offer an almost unlimited opportunity for forest biomass production.
Woodchips Woodchips are small- to medium-sized pieces of wood formed by cutting or chipping larger pieces of wood such as trees, branches, logging residues, stumps, roots, and wood waste. Woodchips may be used as a biomass solid fuel and are raw material ...
from slashes and tree tops and
saw dust Sawdust (or wood dust) is a by-product or waste product of woodworking operations such as sawing, sanding, milling, planing, and routing. It is composed of small chippings of wood. These operations can be performed by woodworking machin ...
from saw mills, and waste paper pulp are forest biomass feedstocks for cellulosic ethanol production. Switchgrass ('' Panicum virgatum'') is a native tallgrass prairie grass. Known for its hardiness and rapid growth, this perennial grows during the warm months to heights of 2–6 feet. Switchgrass can be grown in most parts of the United States, including swamplands, plains, streams, and along the shores & ''interstate highways''. It is ''self-seeding'' (no tractor for sowing, only for mowing), resistant to many diseases and pests, & can produce high yields with low applications of fertilizer and other chemicals. It is also tolerant to poor soils, flooding, & drought; improves soil quality and prevents erosion due its type of root system. Switchgrass is an approved cover crop for land protected under the federal Conservation Reserve Program (CRP). CRP is a government program that pays producers a fee for not growing crops on land on which crops recently grew. This program reduces soil erosion, enhances water quality, and increases wildlife habitat. CRP land serves as a habitat for upland game, such as pheasants and ducks, and a number of insects. Switchgrass for biofuel production has been considered for use on Conservation Reserve Program (CRP) land, which could increase ecological sustainability and lower the cost of the CRP program. However, CRP rules would have to be modified to allow this economic use of the CRP land.
Miscanthus × giganteus ''Miscanthus'' × ''giganteus'', also known as the giant miscanthus, is a sterile hybrid of ''Miscanthus sinensis'' and ''Miscanthus sacchariflorus''. It is a perennial grass with bamboo-like stems that can grow to heights of 3– in one seas ...
is another viable feedstock for cellulosic ethanol production. This species of grass is native to Asia and is a sterile hybrid of '' Miscanthus sinensis'' and '' Miscanthus sacchariflorus''. It has high crop yields, is cheap to grow, and thrives in a variety of climates. However, because it is sterile, it also requires vegetative propagation, making it more expensive. It has been suggested that
Kudzu Kudzu (; also called Japanese arrowroot or Chinese arrowroot) is a group of climbing, coiling, and trailing deciduous perennial vines native to much of East Asia, Southeast Asia, and some Pacific islands, but invasive species, invasive in many ...
may become a valuable source of biomass.


Cellulosic ethanol commercialization

Fueled by subsidies and grants, a boom in cellulosic ethanol research and pilot plants occurred in the early 2000s. Companies such as Iogen, POET, and Abengoa built refineries that can process biomass and turn it into ethanol, while companies such as
DuPont DuPont de Nemours, Inc., commonly shortened to DuPont, is an American multinational chemical company first formed in 1802 by French-American chemist and industrialist Éleuthère Irénée du Pont de Nemours. The company played a major role in ...
,
Diversa Verenium Corporation was a San Diego, California-based industrial biotechnology company founded in 2007 as the result of a merger between Diversa (San Diego) and Celunol (Cambridge, MA). The company specialized in research and development for the ...
, Novozymes, and
Dyadic Dyadic describes the interaction between two things, and may refer to: *Dyad (sociology), interaction between a pair of individuals **The dyadic variation of Democratic peace theory *Dyadic counterpoint, the voice-against-voice conception of polyp ...
invested in enzyme research. However, most of these plants were canceled or closed in the early 2010s as technical obstacles proved too difficult to overcome. As of 2018, only one cellulosic ethanol plant remained operational. In the later 2010s, various companies occasionally attempted smaller-scale efforts at commercializing cellulosic ethanol, although such ventures generally remain at experimental scales and often dependent on subsidies. The companies Granbio, Raízen and the Centro de Tecnologia Canavieira each run a pilot-scale facility operate in Brazil, which together produce around 30 million liters in 2019. Iogen, which started as an enzyme maker in 1991 and re-oriented itself to focus primarily on cellulosic ethanol in 2013, owns many patents for cellulosic ethanol production and provided the technology for the Raízen plant. Other companies developing cellulosic ethanol technology as of 2021 are
Inbicon Inbicon is a Danish company that produces cellulosic ethanol. History Elsam, a Danish power company, began looking at using biomass for the production of energy in the 1990s. The first pilot plant was opened in 2003, and it could process 2.4 me ...
(Denmark); companies operating or planning pilot production plants include New Energy Blue (US), Sekab (Sweden) and
Clariant Clariant AG is a Swiss multinational speciality chemicals company, formed in 1995 as a spin-off from Sandoz. The company is focused on four business areas: care chemicals (consumer and industrial); catalysis; natural resources (oil & mining, mine ...
(in Romania). Abengoa, a Spanish company with cellulosic ethanol assets, became insolvent in 2021. The Australian Renewable Energy Agency, along with state and local governments, partially funded a pilot plant in 2017 and 2020 in New South Wales as part of efforts to diversify the regional economy away from coal mining.


US Government support

From 2006, the US Federal government began promoting the development of ethanol from cellulosic feedstocks. In May 2008, Congress passed a new farm bill that contained funding for the commercialization of second-generation biofuels, including cellulosic ethanol. The ''Food, Conservation, and Energy Act of 2008'' provided for grants covering up to 30% of the cost of developing and building demonstration-scale biorefineries for producing "advanced biofuels," which effectively included all fuels not produced from corn kernel starch. It also allowed for loan guarantees of up to $250 million for building commercial-scale biorefineries. In January 2011, the USDA approved $405 million in loan guarantees through the 2008 Farm Bill to support the commercialization of cellulosic ethanol at three facilities owned by
Coskata Coskata, Inc. was a Warrenville, Illinois based energy company incorporated in 2006 by serial entrepreneur Andrew Perlman's GreatPoint Ventures group. The company was developing processes for the production of cellulosic ethanol from woodchips. ...
, Enerkem and
INEOS New Planet BioEnergy INEOS Group Limited is a British multinational chemicals company headquartered and registered in London. , it is the fourth largest chemical company in the world. Ineos is organised into about 20 standalone business units, each with its own b ...
. The projects represent a combined per year production capacity and will begin producing cellulosic ethanol in 2012. The USDA also released a list of advanced biofuel producers who will receive payments to expand the production of advanced biofuels. In July 2011, the US Department of Energy gave in $105 million in loan guarantees to POET for a commercial-scale plant to be built Emmetsburg, Iowa.


See also

*
Second generation biofuels Second-generation biofuels, also known as advanced biofuels, are fuels that can be manufactured from various types of non-food biomass. Biomass in this context means plant materials and animal waste used especially as a source of fuel. First-gener ...
* Food vs. fuel


References


External links


List of U.S. Ethanol PlantsCellulosic Ethanol Path is Paved With Various TechnologiesThe Transition to Second Generation EthanolCellulosic ethanol output could "explode"Poet Producing Cellulosic Ethanol on Pilot ScaleMore U.S. backing seen possible for ethanol plantsShell fuels cellulosic ethanol push with new Codexis dealEnerkem to build cellulosic ethanol plant in U.S.


* ttp://hitectransportation.org/news/2009/Exec_Summary02-2009.pdf Sandia National Laboratories & GM study: PDF format from hitectransportation.org
Switchgrass Fuel Yields Bountiful Energy


— P.C. Badger, 2002 * US DOE
Office of Biological and Environmental Research (OBER)

National Renewable Energy Laboratory, Research Advances – Cellulosic Ethanol.

USDA Forest Products Laboratory

reuters.com, New biofuels to come from many sources: conference, Fri Feb 13, 2009 2:50pm EST

reuters.com, U.S. weekly ethanol margins rise to above break even, Fri Feb 13, 2009 4:01pm EST

wired.com, One Molecule Could Cure Our Addiction to Oil, 09.24.07


Further reading

* {{DEFAULTSORT:Cellulosic Ethanol Ethanol fuel Ethanol Wood products Forestry Renewable fuels Biofuels technology Energy development Renewable energy commercialization