Cell Encapsulation
   HOME

TheInfoList



OR:

Cell encapsulation is a possible solution to
graft rejection Transplant rejection occurs when transplanted tissue is rejected by the recipient's immune system, which destroys the transplanted tissue. Transplant rejection can be lessened by determining the molecular similitude between donor and recipient a ...
in tissue engineering applications. Cell
microencapsulation Microencapsulation is a process in which tiny particles or droplets are surrounded by a coating to give small capsules, with useful properties. In general, it is used to incorporate food ingredients, enzymes, cells or other materials on a micro m ...
technology involves immobilization of cells within a polymeric
semi-permeable membrane Semipermeable membrane is a type of biological or synthetic, polymeric membrane that will allow certain molecules or ions to pass through it by osmosis. The rate of passage depends on the pressure, concentration, and temperature of the molecule ...
. It permits the bidirectional
diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical p ...
of molecules such as the influx of oxygen, nutrients,
growth factor A growth factor is a naturally occurring substance capable of stimulating cell proliferation, wound healing, and occasionally cellular differentiation. Usually it is a secreted protein or a steroid hormone. Growth factors are important for regu ...
s etc. essential for cell
metabolism Metabolism (, from el, μεταβολή ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cell ...
and the outward diffusion of waste products and
therapeutic A therapy or medical treatment (often abbreviated tx, Tx, or Tx) is the attempted remediation of a health problem, usually following a medical diagnosis. As a rule, each therapy has indications and contraindications. There are many different ...
proteins. At the same time, the semi-permeable nature of the membrane prevents immune cells and
antibodies An antibody (Ab), also known as an immunoglobulin (Ig), is a large, Y-shaped protein used by the immune system to identify and neutralize foreign objects such as pathogenic bacteria and viruses. The antibody recognizes a unique molecule of the ...
from destroying the encapsulated cells, regarding them as foreign invaders. Cell encapsulation could reduce the need for long-term use of
immunosuppressive drugs Immunosuppressive drugs, also known as immunosuppressive agents, immunosuppressants and antirejection medications, are medication, drugs that inhibit or prevent activity of the immune system. Classification Immunosuppressive drugs can be cla ...
after an
organ transplant Organ transplantation is a medical procedure in which an organ is removed from one body and placed in the body of a recipient, to replace a damaged or missing organ. The donor and recipient may be at the same location, or organs may be transpo ...
to control side effects.


History

In 1933 Vincenzo Bisceglie made the first attempt to encapsulate cells in polymer membranes. He demonstrated that
tumor A neoplasm () is a type of abnormal and excessive growth of tissue. The process that occurs to form or produce a neoplasm is called neoplasia. The growth of a neoplasm is uncoordinated with that of the normal surrounding tissue, and persists ...
cells in a polymer structure transplanted into pig
abdominal The abdomen (colloquially called the belly, tummy, midriff, tucky or stomach) is the part of the body between the thorax (chest) and pelvis, in humans and in other vertebrates. The abdomen is the front part of the abdominal segment of the torso ...
cavity remained viable for a long period without being rejected by the
immune system The immune system is a network of biological processes that protects an organism from diseases. It detects and responds to a wide variety of pathogens, from viruses to parasitic worms, as well as cancer cells and objects such as wood splinte ...
. Thirty years later in 1964, the idea of encapsulating cells within ultra thin polymer membrane microcapsules so as to provide immunoprotection to the cells was then proposed by
Thomas Chang Thomas may refer to: People * List of people with given name Thomas * Thomas (name) * Thomas (surname) * Saint Thomas (disambiguation) * Thomas Aquinas (1225–1274) Italian Dominican friar, philosopher, and Doctor of the Church * Thomas the Ap ...
who introduced the term "
artificial cell An artificial cell, synthetic cell or minimal cell is an engineered particle that mimics one or many functions of a biological cell. Often, artificial cells are biological or polymeric membranes which enclose biologically active materials. As such ...
s" to define this concept of bioencapsulation. He suggested that these artificial cells produced by a drop method not only protected the encapsulated cells from immunorejection but also provided a high surface-to-volume relationship enabling good mass transfer of oxygen and nutrients. Twenty years later, this approach was successfully put into practice in small animal models when alginate-polylysine-alginate (APA) microcapsules immobilizing xenograft
islet An islet is a very small, often unnamed island. Most definitions are not precise, but some suggest that an islet has little or no vegetation and cannot support human habitation. It may be made of rock, sand and/or hard coral; may be permanent ...
cells were developed. The study demonstrated that when these microencapsulated islets were implanted into
diabetic Diabetes, also known as diabetes mellitus, is a group of metabolic disorders characterized by a high blood sugar level ( hyperglycemia) over a prolonged period of time. Symptoms often include frequent urination, increased thirst and increased ...
rats, the cells remained viable and controlled
glucose Glucose is a simple sugar with the molecular formula . Glucose is overall the most abundant monosaccharide, a subcategory of carbohydrates. Glucose is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, using ...
levels for several weeks. Human trials utilising encapsulated cells were performed in 1998. Encapsulated cells expressing a cytochrome P450 enzyme to locally activate an anti-tumour prodrug were used in a trial for advanced, non-resectable pancreatic cancer. Approximately a doubling of survival time compared to historic controls was demonstrated.


Cell microencapsulation as a tool for tissue engineering and regenerative medicine

Questions could arise as to why the technique of encapsulation of cells is even required when therapeutic products could just be injected at the site. An important reason for this is that the encapsulated cells would provide a source of sustained continuous release of therapeutic products for longer durations at the site of implantation. Another advantage of cell microencapsulation technology is that it allows the loading of non-human and genetically modified cells into the polymer matrix when the availability of donor cells is limited. Microencapsulation is a valuable technique for local, regional and oral delivery of therapeutic products as it can be implanted into numerous tissue types and organs. For prolonged
drug delivery Drug delivery refers to approaches, formulations, manufacturing techniques, storage systems, and technologies involved in transporting a pharmaceutical compound to its target site to achieve a desired therapeutic effect. Principles related to d ...
to the treatment site, implantation of these drug loaded artificial cells would be more cost effective in comparison to direct drug delivery. Moreover, the prospect of implanting artificial cells with similar chemical composition in several patients irrespective of their leukocyte antigen could again allow reduction in costs.


Key parameters of cell microencapsulation technology

The potential of using cell microencapsulation in successful clinical applications can be realized only if several requirements encountered during the development process are optimized such as the use of an appropriate
biocompatible Biocompatibility is related to the behavior of biomaterials in various contexts. The term refers to the ability of a material to perform with an appropriate host response in a specific situation. The ambiguity of the term reflects the ongoing de ...
polymer to form the mechanically and chemically stable semi-permeable matrix, production of uniformly sized microcapsules, use of an appropriate immune-compatible polycations cross-linked to the encapsulation polymer to stabilized the capsules, selection of a suitable cell type depending on the situation.


Biomaterials

The use of the best biomaterial depending on the application is crucial in the development of drug delivery systems and tissue engineering. The polymer
alginate Alginic acid, also called algin, is a naturally occurring, edible polysaccharide found in brown algae. It is hydrophilic and forms a viscous gum when hydrated. With metals such as sodium and calcium, its salts are known as alginates. Its colour ...
is very commonly used due to its early discovery, easy availability and low cost but other materials such as cellulose sulphate,
collagen Collagen () is the main structural protein in the extracellular matrix found in the body's various connective tissues. As the main component of connective tissue, it is the most abundant protein in mammals, making up from 25% to 35% of the whole ...
,
chitosan Chitosan is a linear polysaccharide composed of randomly distributed β-(1→4)-linked Glucosamine, D-glucosamine (deacetylated unit) and N-Acetylglucosamine, ''N''-acetyl-D-glucosamine (acetylated unit). It is made by treating the chitin shell ...
,
gelatin Gelatin or gelatine (from la, gelatus meaning "stiff" or "frozen") is a translucent, colorless, flavorless food ingredient, commonly derived from collagen taken from animal body parts. It is brittle when dry and rubbery when moist. It may also ...
and
agarose Agarose is a heteropolysaccharide, generally extracted from certain red seaweed. It is a linear polymer made up of the repeating unit of agarobiose, which is a disaccharide made up of D-galactose and 3,6-anhydro-L-galactopyranose. Agarose is ...
have also been employed.


Alginate

Several groups have extensively studied several natural and synthetic polymers with the goal of developing the most suitable biomaterial for cell microencapsulation. Extensive work has been done using alginates which are regarded as the most suitable biomaterials for cell microencapsulation due to their abundance, excellent biocompatibility and
biodegradability Biodegradation is the breakdown of organic matter by microorganisms, such as bacteria and fungi. It is generally assumed to be a natural process, which differentiates it from composting. Composting is a human-driven process in which biodegradati ...
properties. Alginate is a natural polymer which can be extracted from seaweed and
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among ...
with numerous compositions based on the isolation source. Alginate is not free from all criticism. Some researchers believe that alginates with high-M content could produce an inflammatory response and an abnormal cell growth while some have demonstrated that
alginate Alginic acid, also called algin, is a naturally occurring, edible polysaccharide found in brown algae. It is hydrophilic and forms a viscous gum when hydrated. With metals such as sodium and calcium, its salts are known as alginates. Its colour ...
with high-G content lead to an even higher cell overgrowth and inflammatory reaction in vivo as compared to intermediate-G alginates. Even ultrapure alginates may contain
endotoxin Lipopolysaccharides (LPS) are large molecules consisting of a lipid and a polysaccharide that are bacterial toxins. They are composed of an O-antigen, an outer core, and an inner core all joined by a covalent bond, and are found in the outer ...
s, and
polyphenol Polyphenols () are a large family of naturally occurring organic compounds characterized by multiples of phenol units. They are abundant in plants and structurally diverse. Polyphenols include flavonoids, tannic acid, and ellagitannin, some of ...
s which could compromise the biocompatibility of the resultant cell microcapsules. It has been shown that even though purification processes successfully lower endotoxin and polyphenol content in the processed alginate, it is difficult to lower the protein content and the purification processes could in turn modify the properties of the biomaterial. Thus it is essential that an effective purification process is designed so as to remove all the contaminants from alginate before it can be successfully used in clinical applications.


=Modification and functionalization of alginate

= Researchers have also been able to develop alginate microcapsules with an altered form of alginate with enhanced biocompatibility and higher resistance to osmotic swelling. Another approach to increasing the biocompatibility of the membrane biomaterial is through surface modification of the capsules using
peptide Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. A ...
and protein molecules which in turn controls the proliferation and rate of differentiation of the encapsulated cells. One group that has been working extensively on coupling the amino acid sequence Arg-Gly-Asp (RGD) to alginate hydrogels demonstrated that the cell behavior can be controlled by the RGD density coupled on the alginate gels. Alginate microparticles loaded with myoblast cells and functionalized with RGD allowed control over the growth and differentiation of the loaded cells. Another vital factor that controls the use of cell microcapsules in clinical applications is the development of a suitable immune-compatible polycation to coat the otherwise highly porous alginate beads and thus impart stability and immune protection to the system. Poly-L-lysine is the most commonly used polycation but its low biocompatibility restricts the successful clinical use of these PLL formulated microcapsules which attract inflammatory cells thus inducing necrosis of the loaded cells. Studies have also shown that alginate-PLL-alginate (APA) microcapsules demonstrate low mechanical stability and short term durability. Thus several research groups have been looking for alternatives to PLL and have demonstrated promising results with poly-L-ornithine and poly(methylene-co-guanidine) hydrochloride by fabricating durable microcapsules with high and controlled mechanical strength for cell encapsulation. Several groups have also investigated the use of
chitosan Chitosan is a linear polysaccharide composed of randomly distributed β-(1→4)-linked Glucosamine, D-glucosamine (deacetylated unit) and N-Acetylglucosamine, ''N''-acetyl-D-glucosamine (acetylated unit). It is made by treating the chitin shell ...
which is a naturally derived polycation as a potential replacement for PLL to fabricate alginate-chitosan (AC) microcapsules for cell delivery applications. However, studies have also shown that the stability of this AC membrane is again limited and one group demonstrated that modification of this alginate-chitosan microcapsules with genipin, a naturally occurring iridoid glucosid from gardenia fruits, to form genipin cross-linked alginate-chitosan (GCAC) microcapsules could augment stability of the cell loaded microcapsules.


Collagen

Collagen, a major protein component of the ECM, provides support to tissues like skin, cartilage, bones, blood vessels and ligaments and is thus considered a model scaffold or matrix for tissue engineering due to its properties of biocompatibility,
biodegradability Biodegradation is the breakdown of organic matter by microorganisms, such as bacteria and fungi. It is generally assumed to be a natural process, which differentiates it from composting. Composting is a human-driven process in which biodegradati ...
and ability to promote cell binding. This ability allows chitosan to control distribution of cells inside the polymeric system. Thus, Type-I collagen obtained from animal tissues is now successfully being used commercially as tissue engineered biomaterial for multiple applications. Collagen has also been used in nerve repair and bladder engineering.
Immunogenicity Immunogenicity is the ability of a foreign substance, such as an antigen, to provoke an immune response in the body of a human or other animal. It may be wanted or unwanted: * Wanted immunogenicity typically relates to vaccines, where the injectio ...
has limited the applications of collagen. Gelatin has been considered as an alternative for that reason.


Gelatin

Gelatin Gelatin or gelatine (from la, gelatus meaning "stiff" or "frozen") is a translucent, colorless, flavorless food ingredient, commonly derived from collagen taken from animal body parts. It is brittle when dry and rubbery when moist. It may also ...
is prepared from the denaturation of
collagen Collagen () is the main structural protein in the extracellular matrix found in the body's various connective tissues. As the main component of connective tissue, it is the most abundant protein in mammals, making up from 25% to 35% of the whole ...
and many desirable properties such as
biodegradability Biodegradation is the breakdown of organic matter by microorganisms, such as bacteria and fungi. It is generally assumed to be a natural process, which differentiates it from composting. Composting is a human-driven process in which biodegradati ...
, biocompatibility, non-immunogenity in physiological environments, and easy processability make this polymer a good choice for tissue engineering applications. It is used in engineering tissues for the skin, bone and cartilage and is used commercially for skin replacements.


Chitosan

Chitosan Chitosan is a linear polysaccharide composed of randomly distributed β-(1→4)-linked Glucosamine, D-glucosamine (deacetylated unit) and N-Acetylglucosamine, ''N''-acetyl-D-glucosamine (acetylated unit). It is made by treating the chitin shell ...
is a polysaccharide composed of randomly distributed β-(1-4)-linked D-glucosamine (deacetylated unit) and N-acetyl-D-glucosamine (acetylated unit). It is derived from the N-deacetylation of
chitin Chitin ( C8 H13 O5 N)n ( ) is a long-chain polymer of ''N''-acetylglucosamine, an amide derivative of glucose. Chitin is probably the second most abundant polysaccharide in nature (behind only cellulose); an estimated 1 billion tons of chit ...
and has been used for several applications such as
drug delivery Drug delivery refers to approaches, formulations, manufacturing techniques, storage systems, and technologies involved in transporting a pharmaceutical compound to its target site to achieve a desired therapeutic effect. Principles related to d ...
, space-filling implants and in wound dressings. However, one drawback of this polymer is its weak mechanical properties and is thus often combined with other polymers such
collagen Collagen () is the main structural protein in the extracellular matrix found in the body's various connective tissues. As the main component of connective tissue, it is the most abundant protein in mammals, making up from 25% to 35% of the whole ...
to form a polymer with stronger mechanical properties for cell encapsulation applications.


Agarose

Agarose Agarose is a heteropolysaccharide, generally extracted from certain red seaweed. It is a linear polymer made up of the repeating unit of agarobiose, which is a disaccharide made up of D-galactose and 3,6-anhydro-L-galactopyranose. Agarose is ...
is a
polysaccharide Polysaccharides (), or polycarbohydrates, are the most abundant carbohydrates found in food. They are long chain polymeric carbohydrates composed of monosaccharide units bound together by glycosidic linkages. This carbohydrate can react with wa ...
derived from seaweed used for nanoencapsulation of cells and the cell/agarose suspensionVenkat Chokkalingam, Jurjen Tel, Florian Wimmers, Xin Liu, Sergey Semenov, Julian Thiele, Carl G. Figdor, Wilhelm T.S. Huck, Probing cellular heterogeneity in cytokine-secreting immune cells using droplet-based microfluidics, Lab on a Chip, 13, 4740-4744, 2013, DOI: 10.1039/C3LC50945A, http://pubs.rsc.org/en/content/articlelanding/2013/lc/c3lc50945a#!divAbstract can be modified to form microbeads by reducing the temperature during preparation. However, one drawback with the microbeads so obtained is the possibility of cellular protrusion through the
polymer A polymer (; Greek '' poly-'', "many" + ''-mer'', "part") is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic a ...
ic matrix wall after formation of the capsules.


Cellulose Sulphate

Cellulose sulphate is derived from cotton and, once processed appropriately, can be used as a biocompatible base in which to suspend cells. When the poly-anionic cellulose sulphate solution is immersed in a second, poly-cationic solution (e.g. pDADMAC), a semi-permeable membrane is formed around the suspended cells as a result of gelation between the two poly-ions. Both mammalian cell lines and bacterial cells remain viable and continue to replicate within the capsule membrane in order to fill-out the capsule. As such, in contrast to some other encapsulation materials, the capsules can be used to grow cells and act as such like a mini-bioreactor. The biocompatible nature of the material has been demonstrated by observation during studies using the cell-filled capsules themselves for implantation as well as isolated capsule material. Capsules formed from cellulose sulphate have been successfully used, showing safety and efficacy, in clinical and pre-clinical trials in both humans and animals, primarily as anti-cancer treatments, but also exploring possible uses for gene therapy or antibody therapies. Using cellulose sulphate it has been possible to manufacture encapsulated cells as a pharmaceutical product at large scale and fulfilling Good Manufacturing Process (cGMP) standards. This was achieved by the compan
Austrianova
in 2007.


Biocompatibility

The use of an ideal high quality biomaterial with the inherent properties of biocompatibility is the most crucial factor that governs the long term efficiency of this technology. An ideal biomaterial for cell encapsulation should be one that is totally
biocompatible Biocompatibility is related to the behavior of biomaterials in various contexts. The term refers to the ability of a material to perform with an appropriate host response in a specific situation. The ambiguity of the term reflects the ongoing de ...
, does not trigger an immune response in the host and does not interfere with cell
homeostasis In biology, homeostasis (British English, British also homoeostasis) Help:IPA/English, (/hɒmɪə(ʊ)ˈsteɪsɪs/) is the state of steady internal, physics, physical, and chemistry, chemical conditions maintained by organism, living systems. Thi ...
so as to ensure high cell viability. However, one major limitation has been the inability to reproduce the different biomaterials and the requirements to obtain a better understanding of the chemistry and biofunctionality of the biomaterials and the
microencapsulation Microencapsulation is a process in which tiny particles or droplets are surrounded by a coating to give small capsules, with useful properties. In general, it is used to incorporate food ingredients, enzymes, cells or other materials on a micro m ...
system. Several studies demonstrate that surface modification of these cell containing microparticles allows control over the growth and cellular differentiation. of the encapsulated cells. One study proposed the use of
zeta potential Zeta potential is the electrical potential at the slipping plane. This plane is the interface which separates mobile fluid from fluid that remains attached to the surface. Zeta potential is a scientific term for electrokinetic potential in coll ...
which measures the
electric charge Electric charge is the physical property of matter that causes charged matter to experience a force when placed in an electromagnetic field. Electric charge can be ''positive'' or ''negative'' (commonly carried by protons and electrons respe ...
of the microcapsule as a means to predict the interfacial reaction between microcapsule and the surrounding tissue and in turn the biocompatibility of the delivery system.


Microcapsule permeability

A fundamental criterion that must be established while developing any device with a
semi-permeable membrane Semipermeable membrane is a type of biological or synthetic, polymeric membrane that will allow certain molecules or ions to pass through it by osmosis. The rate of passage depends on the pressure, concentration, and temperature of the molecule ...
is to adjust the permeability of the device in terms of entry and exit of molecules. It is essential that the cell microcapsule is designed with uniform thickness and should have a control over both the rate of molecules entering the capsule necessary for cell viability and the rate of
therapeutic A therapy or medical treatment (often abbreviated tx, Tx, or Tx) is the attempted remediation of a health problem, usually following a medical diagnosis. As a rule, each therapy has indications and contraindications. There are many different ...
products and waste material exiting the capsule membrane. Immunoprotection of the loaded cell is the key issue that must be kept in mind while working on the permeability of the encapsulation membrane as not only immune cells but also
antibodies An antibody (Ab), also known as an immunoglobulin (Ig), is a large, Y-shaped protein used by the immune system to identify and neutralize foreign objects such as pathogenic bacteria and viruses. The antibody recognizes a unique molecule of the ...
and
cytokine Cytokines are a broad and loose category of small proteins (~5–25 kDa) important in cell signaling. Cytokines are peptides and cannot cross the lipid bilayer of cells to enter the cytoplasm. Cytokines have been shown to be involved in autocrin ...
s should be prevented entry into the microcapsule which in fact depends on the pore size of the biomembrane. It has been shown that since different cell types have different metabolic requirements, thus depending on the cell type encapsulated in the membrane the permeability of the membrane has to be optimized. Several groups have been dedicated towards the study of membrane permeability of cell microcapsules and although the role of permeability of certain essential elements like oxygen has been demonstrated, the permeability requirements of each cell type are yet to be determined. Sodium Citrate is used for degradation of alginate beads after encapsulation of cells. In order to determine viability of the cells or for further experimentation. Concentrations of approximately 25mM are used to dissolve the alginate spheres and the solution is spun down using a centrifuge so the sodium citrate can be removed and the cells can be collected.


Mechanical strength and durability

It is essential that the microcapsules have adequate membrane strength (mechanical stability) to endure physical and
osmotic stress Osmotic shock or osmotic stress is physiologic dysfunction caused by a sudden change in the solute concentration around a cell, which causes a rapid change in the movement of water across its cell membrane. Under hypertonic conditions - conditio ...
such as during the exchange of nutrients and waste products. The microcapsules should be strong enough and should not rupture on implantation as this could lead to an immune rejection of the encapsulated cells. For instance, in the case of
xenotransplantation Xenotransplantation (''xenos-'' from the Greek meaning "foreign" or strange), or heterologous transplant, is the transplantation of living cells, tissues or organs from one species to another. Such cells, tissues or organs are called xenograft ...
, a tighter more stable membrane would be required in comparison to
allotransplantation Allotransplant (''allo-'' meaning "other" in Greek) is the transplantation of cells, tissues, or organs to a recipient from a genetically non-identical donor of the same species. The transplant is called an allograft, allogeneic transplant, ...
. Also, while investigating the potential of using APA microcapsules loaded with bile salt hydrolase (BSH) overproducing active
Lactobacillus ''Lactobacillus'' is a genus of Gram-positive, aerotolerant anaerobes or microaerophilic, rod-shaped, non-spore-forming bacteria. Until 2020, the genus ''Lactobacillus'' comprised over 260 phylogenetically, ecologically, and metabolically diver ...
plantarum 80 cells, in a simulated gastro intestinal tract model for oral delivery applications, the mechanical integrity and shape of the microcapsules was evaluated. It was shown that APA microcapsules could potentially be used in the oral delivery of live bacterial cells. However, further research proved that the GCAC microcapsules possess a higher mechanical stability as compared to APA microcapsules for oral delivery applications. Martoni et al. were experimenting with bacteria-filled capsules that would be taken by mouth to reduce serum cholesterol. The capsules were pumped through a series of vessels simulating the human GI tract to determine how well the capsules would survive in the body. Extensive research into the mechanical properties of the biomaterial to be used for cell microencapsulation is necessary to determine the durability of the microcapsules during production and especially for in vivo applications where a sustained release of the therapeutic product over long durations is required. van der Wijngaart et al. grafted a solid, but permeable, shell around the cells to provide increased mechanical strength. Sodium Citrate is used for degradation of alginate beads after encapsulation of cells. In order to determine viability of the cells or for further experimentation. Concentrations of approximately 25mM are used to dissolve the alginate spheres and the solution is spun down using a centrifuge so the sodium citrate can be removed and the cells can be collected.


Methods for testing mechanical properties of microcapsules

* A
Rheometer A rheometer is a laboratory device used to measure the way in which a dense fluid (a liquid, suspension or slurry) flows in response to applied forces. It is used for those fluids which cannot be defined by a single value of viscosity and t ...
is a machine used to test ** shear rate ** shear strength ** consistency coefficient ** flow behavior index *
Viscometer A viscometer (also called viscosimeter) is an instrument used to measure the viscosity of a fluid. For liquids with viscosities which vary with flow conditions, an instrument called a rheometer is used. Thus, a rheometer can be considered as a spe ...
- shear strength testing


Microcapsule Generation


Microfluidics

Droplet-based microfluidics can be used to generate microparticles with repeatable size. * manipulation of alginate solution to allow microcapsules to be created


Electrospray The name electrospray is used for an apparatus that employs electricity to disperse a liquid or for the fine aerosol resulting from this process. High voltage is applied to a liquid supplied through an emitter (usually a glass or metallic capilla ...
ing Techniques

Eletrospraying is used to create alginate spheres by pumping an alginate solution through a needle. A source of high voltage usually provided by a clamp attached to the needle is used to generate an electric potential with the alginate falling from the needle tip into a solution that contains a ground. Calcium chloride is used as cross linking solution in which the generated capsules drop into where they harden after approximately 30 minutes. Beads are formed from the needle due to charge and surface tension. * Size dependency of the beads ** height alterations of device from needle to calcium chloride solution ** voltage alterations of clamp on the needle ** alginate concentration alterations


Microcapsule size

The diameter of the microcapsules is an important factor that influences both the immune response towards the cell microcapsules as well as the mass transport across the capsule membrane. Studies show that the cellular response to smaller capsules is much lesser as compared to larger capsules and in general the diameter of the cell loaded microcapsules should be between 350-450 µm so as to enable effective diffusion across the semi-permeable membrane.


Cell choice

The cell type chosen for this technique depends on the desired application of the cell microcapsules. The cells put into the capsules can be from the patient (
autologous Autotransplantation is the transplantation of organs, tissues, or even particular proteins from one part of the body to another in the same person ('' auto-'' meaning "self" in Greek). The autologous tissue (also called autogenous, autogene ...
cells), from another donor (allogeneic cells) or from other species (xenogeneic cells). The use of autologous cells in microencapsulation therapy is limited by the availability of these cells and even though xenogeneic cells are easily accessible, danger of possible transmission of
virus A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. Since Dmitri Ivanovsky's 1 ...
es, especially
porcine The pig (''Sus domesticus''), often called swine, hog, or domestic pig when distinguishing from other members of the genus '' Sus'', is an omnivorous, domesticated, even-toed, hoofed mammal. It is variously considered a subspecies of ''Sus ...
endogenous
retrovirus A retrovirus is a type of virus that inserts a DNA copy of its RNA genome into the DNA of a host cell that it invades, thus changing the genome of that cell. Once inside the host cell's cytoplasm, the virus uses its own reverse transcriptase ...
to the patient restricts their clinical application, and after much debate several groups have concluded that studies should involve the use of allogeneic instead of xenogeneic cells. Depending on the application, the cells can be genetically altered to express any required protein. However, enough research has to be carried out to validate the safety and stability of the expressed gene before these types of cells can be used. This technology has not received approval for clinical trial because of the high immunogenicity of cells loaded in the capsules. They secrete
cytokine Cytokines are a broad and loose category of small proteins (~5–25 kDa) important in cell signaling. Cytokines are peptides and cannot cross the lipid bilayer of cells to enter the cytoplasm. Cytokines have been shown to be involved in autocrin ...
s and produce a severe inflammatory reaction at the implantation site around the capsules, in turn leading to a decrease in viability of the encapsulated cells. One promising approach being studied is the administration of anti-inflammatory drugs to reduce the immune response produced due to administration of the cell loaded microcapsules. Another approach which is now the focus of extensive research is the use of
stem cell In multicellular organisms, stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. They are the earliest type o ...
s such as mesenchymal stem cells for long term cell microencapsulation and cell therapy applications in hopes of reducing the immune response in the patient after implantation. Another issue which compromises long term viability of the microencapsulated cells is the use of fast proliferating cell lines which eventually fill up the entire system and lead to decrease in the
diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical p ...
efficiency across the semi-permeable membrane of the capsule. A solution to this could be in the use of cell types such as
myoblast Myogenesis is the formation of skeletal muscular tissue, particularly during embryonic development. Muscle fibers generally form through the fusion of precursor myoblasts into multinucleated fibers called ''myotubes''. In the early development o ...
s which do not proliferate after the microencapsulation procedure.


Non-Therapeutic Applications

Probiotic Probiotics are live microorganisms promoted with claims that they provide health benefits when consumed, generally by improving or restoring the gut microbiota. Probiotics are considered generally safe to consume, but may cause bacteria-host i ...
s are increasingly being used in numerous dairy products such as ice cream, milk powders, yoghurts, frozen dairy desserts and cheese due to their important health benefits. But, low viability of probiotic
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among ...
in the food still remains a major hurdle. The pH, dissolved oxygen content, titratable acidity, storage temperature, species and strains of associative fermented dairy product organisms and concentration of lactic and acetic acids are some of the factors that greatly affect the probiotic viability in the product. As set by
Food and Agriculture Organization The Food and Agriculture Organization of the United Nations (FAO)french: link=no, Organisation des Nations unies pour l'alimentation et l'agriculture; it, Organizzazione delle Nazioni Unite per l'Alimentazione e l'Agricoltura is an intern ...
(FAO) of the United Nations and the
World Health Organization The World Health Organization (WHO) is a specialized agency of the United Nations responsible for international public health. The WHO Constitution states its main objective as "the attainment by all peoples of the highest possible level of h ...
(WHO), the standard in order to be considered a health food with probitic addition, the product should contain per gram at least 106-107 cfu of viable probiotic bacteria. It is necessary that the bacterial cells remain stable and healthy in the manufactured product, are sufficiently viable while moving through the upper digestive tract and are able to provide positive effects upon reaching the intestine of the host. Cell microencapsulation technology has successfully been applied in the food industry for the encapsulation of live probiotic bacteria cells to increase viability of the bacteria during processing of dairy products and for targeted delivery to the gastrointestinal tract. Apart from dairy products, microencapsulated probiotics have also been used in non-dairy products, such a
TheresweetTM
which is a
sweetener {{Wiktionary, sweetener A sweetener is a substance added to food or drink to impart the flavor of sweetness, either because it contains a type of sugar, or because it contains a sweet-tasting sugar substitute. Many artificial sweeteners have been ...
. It can be used as a convenient vehicle for delivery of encapsulated ''Lactobacillus'' to the intestine although it is not itself a dairy product.


Therapeutic Applications


Diabetes

The potential of using bioartificial pancreas, for treatment of
diabetes mellitus Diabetes, also known as diabetes mellitus, is a group of metabolic disorders characterized by a high blood sugar level ( hyperglycemia) over a prolonged period of time. Symptoms often include frequent urination, increased thirst and increased ap ...
, based on encapsulating
islet An islet is a very small, often unnamed island. Most definitions are not precise, but some suggest that an islet has little or no vegetation and cannot support human habitation. It may be made of rock, sand and/or hard coral; may be permanent ...
cells within a semi permeable membrane is extensively being studied by scientists. These devices could eliminate the need for of
immunosuppressive drug Immunosuppressive drugs, also known as immunosuppressive agents, immunosuppressants and antirejection medications, are drugs that inhibit or prevent activity of the immune system. Classification Immunosuppressive drugs can be classified into ...
s in addition to finally solving the problem of shortage of organ donors. The use of microencapsulation would protect the islet cells from immune rejection as well as allow the use of animal cells or genetically modified insulin-producing cells. It is hoped that development of these islet encapsulated microcapsules could prevent the need for the insulin injections needed several times a day by type 1 diabetic patients. The Edmonton protocol involves implantation of human islets extracted from cadaveric donors and has shown improvements towards the treatment of type 1 diabetics who are prone to
hypoglycemic Hypoglycemia, also called low blood sugar, is a fall in blood sugar to levels below normal, typically below 70 mg/dL (3.9 mmol/L). Whipple's triad is used to properly identify hypoglycemic episodes. It is defined as blood glucose belo ...
unawareness. However, the two major hurdles faced in this technique are the limited availability of donor organs and with the need for immunosuppresents to prevent an immune response in the patient's body. Several studies have been dedicated towards the development of bioartificial pancreas involving the immobilization of islets of Langerhans inside polymeric capsules. The first attempt towards this aim was demonstrated in 1980 by Lim et al. where xenograft islet cells were encapsulated inside alginate polylysine microcapsules and showed significant in vivo results for several weeks. It is envisaged that the implantation of these encapsulated cells would help to overcome the use of immunosuppressive drugs and also allow the use of xenograft cells thus obviating the problem of donor shortage. The polymers used for islet microencapsulation are alginate, chitosan,
polyethylene glycol Polyethylene glycol (PEG; ) is a polyether compound derived from petroleum with many applications, from industrial manufacturing to medicine. PEG is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), depending on its molecular we ...
(PEG), agarose, sodium cellulose sulfate and water-insoluble polyacrylates with alginate and PEG being commonly used polymers. With successful in vitro studies being performed using this technique, significant work in clinical trials using microencapsulated human islets is being carried out. In 2003, the use of alginate/PLO microcapsules containing islet cells for pilot phase-1 clinical trials was permitted to be carried out at the University of Perugia by the Italian Ministry of Health. In another study, the potential of clinical application of PEGylation and low doses of the immunosuppressant
cyclosporine Ciclosporin, also spelled cyclosporine and cyclosporin, is a calcineurin inhibitor, used as an immunosuppressant medication. It is a natural product. It is taken orally or intravenously for rheumatoid arthritis, psoriasis, Crohn's disease ...
A were evaluated. The trial which began in 2005 by Novocell, now forms the phase I/II of clinical trials involving implantation of islet allografts into the subcutaneous site. However, there have been controversial studies involving human clinical trials where Living Cell technologies Ltd demonstrated the survival of functional xenogeneic cells transplanted without immunosuppressive medication for 9.5 years. However, the trial received harsh criticism from the International Xenotransplantation Association as being risky and premature. However, even though clinical trials are under way, several major issues such as biocompatibility and immunoprotection need to be overcome. Potential alternatives to encapsulating isolated islets (of either allo- or xenogeneic origin) are also being explored. Using sodium cellulose sulphate technology fro
Austrianova Singapore
an islet cell line was encapsulated and it was demonstrated that the cells remain viable and release insulin in response to glucose. In pre-clinical studies, implanted, encapsulated cells were able to restore blood glucose levels in diabetic rats over a period of 6 months.


Cancer

The use of cell encapsulated microcapsules towards the treatment of several forms of
cancer Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal b ...
has shown great potential. One approach undertaken by researchers is through the implantation of microcapsules containing genetically modified cytokine secreting cells. An example of this was demonstrated by Cirone et al. when genetically modified IL-2 cytokine secreting non-
autologous Autotransplantation is the transplantation of organs, tissues, or even particular proteins from one part of the body to another in the same person ('' auto-'' meaning "self" in Greek). The autologous tissue (also called autogenous, autogene ...
mouse
myoblast Myogenesis is the formation of skeletal muscular tissue, particularly during embryonic development. Muscle fibers generally form through the fusion of precursor myoblasts into multinucleated fibers called ''myotubes''. In the early development o ...
s implanted into mice showed a delay in the
tumor A neoplasm () is a type of abnormal and excessive growth of tissue. The process that occurs to form or produce a neoplasm is called neoplasia. The growth of a neoplasm is uncoordinated with that of the normal surrounding tissue, and persists ...
growth with an increased rate of survival of the animals. However, the efficiency of this treatment was brief due to an immune response towards the implanted microcapsules. Another approach to cancer suppression is through the use of angiogenesis inhibitors to prevent the release of
growth factor A growth factor is a naturally occurring substance capable of stimulating cell proliferation, wound healing, and occasionally cellular differentiation. Usually it is a secreted protein or a steroid hormone. Growth factors are important for regu ...
s which lead to the spread of tumors. The effect of implanting microcapsules loaded with xenogenic cells genetically modified to secrete
endostatin Endostatin is a naturally occurring, 20-kDa C-terminal fragment derived from type XVIII collagen. It is reported to serve as an anti-angiogenic agent, similar to angiostatin and thrombospondin. Endostatin is a broad-spectrum angiogenesis inhibi ...
, an
antiangiogenic An angiogenesis inhibitor is a substance that inhibits the growth of new blood vessels ( angiogenesis). Some angiogenesis inhibitors are endogenous and a normal part of the body's control and others are obtained exogenously through pharmaceutical d ...
drug which causes
apoptosis Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes incl ...
in
tumor A neoplasm () is a type of abnormal and excessive growth of tissue. The process that occurs to form or produce a neoplasm is called neoplasia. The growth of a neoplasm is uncoordinated with that of the normal surrounding tissue, and persists ...
cells, has been extensively studied. However, this method of local delivery of microcapsules was not feasible in the treatment of patients with many tumors or in
metastasis Metastasis is a pathogenic agent's spread from an initial or primary site to a different or secondary site within the host's body; the term is typically used when referring to metastasis by a cancerous tumor. The newly pathological sites, then, ...
cases and has led to recent studies involving systemic implantation of the capsules. In 1998, a murine model of pancreatic cancer was used to study the effect of implanting genetically modified
cytochrome P450 Cytochromes P450 (CYPs) are a Protein superfamily, superfamily of enzymes containing heme as a cofactor (biochemistry), cofactor that functions as monooxygenases. In mammals, these proteins oxidize steroids, fatty acids, and xenobiotics, and are ...
expressing feline
epithelial Epithelium or epithelial tissue is one of the four basic types of animal tissue, along with connective tissue, muscle tissue and nervous tissue. It is a thin, continuous, protective layer of compactly packed cells with a little intercellula ...
cells encapsulated in cellulose sulfate polymers for the treatment of solid tumors. The approach demonstrated for the first time the application of
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. A ...
expressing cells to activate chemotherapeutic agents. On the basis of these results, an encapsulated cell therapy product, NovaCaps, was tested in a phaseI/II clinical trial for the treatment of pancreatic cancer in patients and has recently been designated by the European medicines agency (EMEA) as an orphan drug in Europe. A further phase I/II clinical trial using the same product confirmed the results of the first trial, demonstrating an approximate doubling of survival time in patients with stage IV pancreatic cancer. In all of these trials using cellulose sulphate, in addition to the clear anti-tumour effects, the capsules were well tolerated and there were no adverse reactions seen such as immune response to the capsules, demonstrating the biocompatible nature of the cellulose sulphate capsules. In one patient the capsules were in place for almost 2 years with no side effects. These studies show the promising potential application of cell microcapsules towards the treatment of cancers. However, solutions to issues such as immune response leading to inflammation of the surrounding tissue at the site of capsule implantation have to be researched in detail before more clinical trials are possible.


Heart Diseases

Numerous studies have been dedicated towards the development of effective methods to enable
cardiac The heart is a muscular organ in most animals. This organ pumps blood through the blood vessels of the circulatory system. The pumped blood carries oxygen and nutrients to the body, while carrying metabolic waste such as carbon dioxide to t ...
tissue regeneration in patients after
ischemic Ischemia or ischaemia is a restriction in blood supply to any tissue, muscle group, or organ of the body, causing a shortage of oxygen that is needed for cellular metabolism (to keep tissue alive). Ischemia is generally caused by problems w ...
heart disease. An emerging approach to answer the problems related to ischemic tissue repair is through the use of stem cell-based therapy. However, the actual mechanism due to which this stem cell-based therapy has generative effects on cardiac function is still under investigation. Even though numerous methods have been studied for cell administration, the efficiency of the number of cells retained in the beating heart after implantation is still very low. A promising approach to overcome this problem is through the use of cell microencapsulation therapy which has shown to enable a higher cell retention as compared to the injection of free
stem cell In multicellular organisms, stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. They are the earliest type o ...
s into the heart. Another strategy to improve the impact of cell based encapsulation technique towards cardiac regenerative applications is through the use of genetically modified stem cells capable of secreting angiogenic factors such as
vascular endothelial growth factor Vascular endothelial growth factor (VEGF, ), originally known as vascular permeability factor (VPF), is a signal protein produced by many cells that stimulates the formation of blood vessels. To be specific, VEGF is a sub-family of growth factors, ...
(VEGF) which stimulate
neovascularization Neovascularization is the natural formation of new blood vessels ('' neo-'' + '' vascular'' + '' -ization''), usually in the form of functional microvascular networks, capable of perfusion by red blood cells, that form to serve as collateral circu ...
and restore perfusion in the damaged ischemic heart. An example of this is shown in the study by Zang et al. where genetically modified xenogeneic CHO cells expressing VEGF were encapsulated in alginate-polylysine-alginate microcapsules and implanted into rat myocardium. It was observed that the encapsulation protected the cells from an immunorespone for three weeks and also led to an improvement in the cardiac tissue post-
infarction Infarction is tissue death (necrosis) due to inadequate blood supply to the affected area. It may be caused by artery blockages, rupture, mechanical compression, or vasoconstriction. The resulting lesion is referred to as an infarct (from the ...
due to increased angiogenesis.


Monoclonal Antibody Therapy

The use of monoclonal antibodies for therapy is now widespread for treatment of cancers and inflammatory diseases. Using cellulose sulphate technology, scientists have successfully encapsulated antibody producing hybridoma cells and demonstrated subsequent release of the therapeutic antibody from the capsules. The capsules containing the hybridoma cells were used in pre-clinical studies to deliver neutralising antibodies to the mouse retrovirus FrCasE, successfully preventing disease.


Other conditions

Many other medical conditions have been targeted with encapsulation therapies, especially those involving a deficiency in some biologically derived protein. One of the most successful approaches is an external device that acts similarly to a
dialysis machine In chemistry, dialysis is the process of separating molecules in solution by the difference in their rates of diffusion through a semipermeable membrane, such as dialysis tubing. Dialysis is a common laboratory technique that operates on the sam ...
, only with a reservoir of pig
hepatocytes A hepatocyte is a cell of the main parenchymal tissue of the liver. Hepatocytes make up 80% of the liver's mass. These cells are involved in: * Protein synthesis * Protein storage * Transformation of carbohydrates * Synthesis of cholesterol, b ...
surrounding the semipermeable portion of the blood-infused tubing. This apparatus can remove toxins from the blood of patients suffering severe liver failure. Other applications that are still in development include cells that produce ciliary-derived neurotrophic factor for the treatment of
ALS Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND) or Lou Gehrig's disease, is a neurodegenerative disease that results in the progressive loss of motor neurons that control voluntary muscles. ALS is the most com ...
and
Huntington's disease Huntington's disease (HD), also known as Huntington's chorea, is a neurodegenerative disease that is mostly inherited. The earliest symptoms are often subtle problems with mood or mental abilities. A general lack of coordination and an unst ...
, glial-derived neurotrophic factor for
Parkinson's disease Parkinson's disease (PD), or simply Parkinson's, is a long-term degenerative disorder of the central nervous system that mainly affects the motor system. The symptoms usually emerge slowly, and as the disease worsens, non-motor symptoms becom ...
,
erythropoietin Erythropoietin (; EPO), also known as erythropoetin, haematopoietin, or haemopoietin, is a glycoprotein cytokine secreted mainly by the kidneys in response to cellular hypoxia; it stimulates red blood cell production (erythropoiesis) in the bo ...
for
anemia Anemia or anaemia (British English) is a blood disorder in which the blood has a reduced ability to carry oxygen due to a lower than normal number of red blood cells, or a reduction in the amount of hemoglobin. When anemia comes on slowly, th ...
, and
HGH Growth hormone (GH) or somatotropin, also known as human growth hormone (hGH or HGH) in its human form, is a peptide hormone that stimulates growth, cell reproduction, and cell regeneration in humans and other animals. It is thus important in h ...
for
dwarfism Dwarfism is a condition wherein an organism is exceptionally small, and mostly occurs in the animal kingdom. In humans, it is sometimes defined as an adult height of less than , regardless of sex; the average adult height among people with dw ...
. In addition, monogeneic diseases such as haemophilia, Gaucher's disease and some mucopolysaccharide disorders could also potentially be targeted by encapsulated cells expressing the protein that is otherwise lacking in the patient.


References

{{Reflist, 2 Biomaterials Biomedical engineering Tissue engineering Regenerative biomedicine Drug delivery devices