HOME

TheInfoList



OR:

Catabolite Control Protein A (CcpA) is a master regulator of carbon metabolism in
gram-positive In bacteriology, gram-positive bacteria are bacteria that give a positive result in the Gram stain test, which is traditionally used to quickly classify bacteria into two broad categories according to their type of cell wall. Gram-positive bacte ...
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among ...
. It is a member of the LacI/ GalR transcription regulator family. In contrast to most LacI/GalR proteins, CcpA is allosterically regulated principally by a protein-protein interaction, rather than a protein-small molecule interaction. CcpA interacts with the
phosphorylated In chemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology and could be driven by natural selection. Text was copied from this source, whi ...
form of Hpr and Crh, which is formed when high concentrations of glucose or fructose-1,6-bisphosphate are present in the cell. Interaction of Hpr or Crh modulates the DNA sequence specificity of CcpA, allowing it to bind operator DNA to modulate transcription. Small molecules
glucose-6-phosphate Glucose 6-phosphate (G6P, sometimes called the Robison ester) is a glucose sugar phosphorylated at the hydroxy group on carbon 6. This dianion is very common in cells as the majority of glucose entering a cell will become phosphorylated in this wa ...
and
fructose-1,6-bisphosphate Fructose 1,6-bisphosphate, also known as Harden-Young ester, is fructose sugar phosphorylated on carbons 1 and 6 (i.e., is a fructosephosphate). The β-D-form of this compound is common in cells. Upon entering the cell, most glucose and fructos ...
are also known allosteric effectors, fine-tuning CcpA function.


Structure

The DNA-binding functional unit of CcpA consists of a homodimer. The N-terminal region of each monomer form a DNA-binding site while the C-terminal portion forms a "regulatory" domain. A short linker connects the N-terminal DNA binding domain and the C-terminal regulatory domain, which partially contacts DNA when bound. The LacI/GalR subfamily can be functionally subdivided based on the presence or absence of a "YxxPxxxAxxL" motif in the liker sequence; CcpA belongs to the subdivision containing this motif. The regulatory domain is further subdivided into a N-terminal and C-terminal subdomain. Small molecule effector binding occurs in the cleft between these subdomains. Binding to phosphorylated Hpr/Crh occurs along the regulatory domain's N-subdomain.


References

{{DEFAULTSORT:Ccpa Proteins